

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

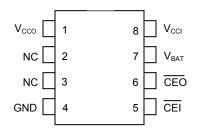
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



DS1218 Nonvolatile Controller

FEATURES

- Converts CMOS RAM into nonvolatile memories
- Unconditionally write protects when V_{CC} is out of tolerance
- Automatically switches to battery when power fail occurs
- Space saving 8-pin PDIP or 8-pin 150 mil SO Packages
- Consumes less than 100nA of battery current

PIN ASSIGNMENT

PIN DESCRIPTION

V_{CCI} - Input +5 Volt Supply V_{CCO} - RAM Power (V_{CC}) Supply

CEI - Chip Enable Input
 NC - No Connection
 CEO - Chip Enable Output

 V_{BAT} -+ Battery GND - Ground

DESCRIPTION

The DS1218 is a CMOS circuit which solves the application problems of converting CMOS RAM into nonvolatile memory. Incoming power is monitored for an out-of-tolerance condition. When such a condition is detected, the chip enable output is inhibited to accomplish write protection and the battery is switched on to supply RAM with uninterrupted power. Special circuitry uses a low-leakage CMOS process which affords precise voltage detection at extremely low battery consumption. The 8-pin package keeps PC board real estate requirements to a minimum. By combining the DS1218 nonvolatile controller chip with a full CMOS memory and lithium batteries, 10 years of nonvolatile RAM operation can be achieved.

OPERATION

The DS1218 Nonvolatile Controller performs the circuit functions required to battery back-up a RAM. First, a switch is provided to direct power from the battery or V_{CCI} supply, depending on which is greater. This switch has a voltage drop of less than 0.2V. The second function which the nonvolatile controller provides is power-fail detection. The DS1218 constantly monitors the V_{CC} supply. When V_{CCI} falls to 1.26 times the battery voltage, a precision comparator outputs a power-fail detect signal to the chip enable logic. The third function of write protection is accomplished by holding the chip enable output signal to within 0.2V of the V_{CCI} or battery supply, when a power-fail condition is detected.

During nominal supply conditions, the chip enable output will follow chip enable input with a maximum propagation delay of 10 ns.

ABSOLUTE MAXIMUM RATINGS

Voltage Range on Any Pin Relative to Ground

Operating Temperature Range

Storage Temperature Range

Soldering Temperature (reflow, SO)

Lead Temperature (soldering, 10s)

-0.5V to +7.0V

0°C to +7.0V

-55°C to +125°C

+260°C

+300°C

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

PDIP

SO

 $\begin{array}{lll} \mbox{Junction-to-Ambient Thermal Resistance } (\theta_{JA}) & 110^{\circ}\mbox{C/W} \\ \mbox{Junction-to-Case Thermal Resistance } (\theta_{JC}) & .40^{\circ}\mbox{C/W} \\ \mbox{Junction-to-Ambient Thermal Resistance } (\theta_{JA}) & .136^{\circ}\mbox{C/W} \\ \mbox{Junction-to-Case Thermal Resistance } (\theta_{JC}) & .38^{\circ}\mbox{C/W} \\ \end{array}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board for the SO. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

RECOMMENDED OPERATING CONDITIONS

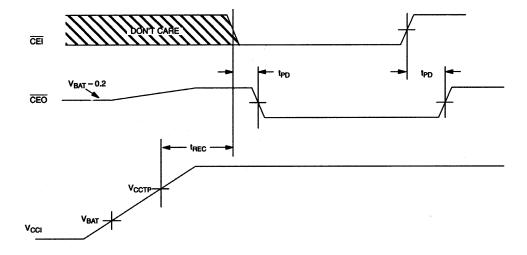
 $(0^{\circ}C \text{ to } +70^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply	V_{CCI}	4.5	5.0	5.5	V	2
Logic 1	$V_{ m IH}$	2.0		5.5	V	2
Logic 0	$V_{ m IL}$	-0.3		0.8	V	2
Battery Supply	V_{BAT}	2.5	3.0	3.5	V	2

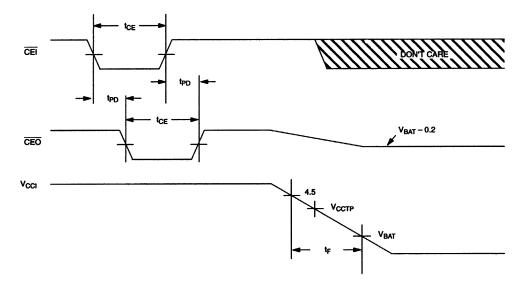
DC ELECTRICAL CHARACTERISTICS (0°C to +70°C; $V_{CCI} = 5V \pm 10\%$)

		(5 5 5 5 5 7 66)				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Active Current	I_{CCI}		2	5	mA	4
Battery Current	I_{BAT}			100	nA	4, 5
RAM Current	I_{CCO}			80	mA	6
$(V_{CCO1} \ge V_{CCI} - 0.3V)$						
RAM Current	I_{CCO}		70		mA	
$(V_{CCO} \ge V_{CCI} - 0.2V)$						
Input Leakage	$ m I_{IL}$	-1.0		+1.0	μΑ	
CEO Output @ 2.4V	I_{OH}	-1.0			mA	
CEO Output @ 0.4V	I_{OL}			4.0	mA	
V _{CC} Trip Point	V_{CCTP}		$1.26 \text{xV}_{\text{BAT}}$			

CAPACITANCE

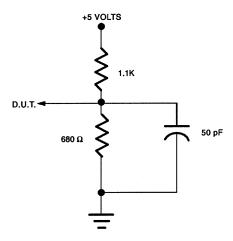

 $(T_A = +25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}			5	pF	
Output Capacitance	C_{OUT}			7	pF	


AC ELECTRICAL CHARACTERISTICS (0°C to +70°C; $V_{CC} = 5.0V \pm 10\%$)

					00	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
CE Propagation Delay	t_{PD}		4	10	ns	3
Recovery at Power-up	$t_{ m REC}$	0.2		2	ms	
V _{CC} Slew Rate	$t_{ m F}$	500			μs	
CE Pulse Width	t_{CE}			1.5	μs	7, 8

TIMING DIAGRAM: POWER-UP


TIMING DIAGRAM: POWER-DOWN

NOTES:

- 2. All voltages referenced to ground.
- 3. Measured with a load as shown in Figure 1.
- 4. Outputs open.
- 5. Drain from battery when $V_{CC} \le V_{BAT}$.
- 6. Maximum amount of current which can be drawn through pin 1 of the controller.
- 7. t_{CE} max must be met to ensure data integrity on power loss.
- 8. CEO can only sustain leakage current in the battery backup mode.

OUTPUT LOAD Figure 1

ORDERING INFORMATION

PART TEMP RANGE		PIN- PACKAGE
DS1218+	0°C to +70°C	8 PDIP
DS1218S+	0°C to +70°C	8 SO

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

PACKAGE INFORMATION

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 PDIP	P8+1	<u>21-0043</u>	
8 SO	S8+2	21-0041	90-0096

REVISION HISTORY

REVISION DATE	DESCRIPTION	PAGES CHANGED
6/12	Added lead temperature and soldering temperature information to the <i>Absolute Maximum Ratings</i> section; added the <i>Package Thermal Characteristics</i> section; added the <i>Ordering Information</i> and <i>Package Information</i> sections	2, 6