

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

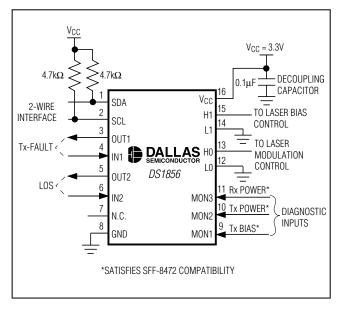
General Description

The DS1856 dual, temperature-controlled, nonvolatile (NV) variable resistors with three monitors consists of two 256-position, linear, variable resistors; three analog monitor inputs (MON1, MON2, MON3); and a direct-todigital temperature sensor. The device provides an ideal method for setting and temperature-compensating bias voltages and currents in control applications using minimal circuitry. The variable resistor settings are stored in EEPROM memory and can be accessed over the 2-wire serial bus.

Relative to other members of the family, the DS1856 is essentially a DS1859 with a DS1852-friendly memory map. In particular, the DS1856 can be configured so the 128 bytes of internal Auxiliary EEPROM memory is mapped into Main Device Table 00h and Table 01h, maintaining compatibility between both the DS1858/DS1859 and the DS1852. The DS1856 also features password protection equivalent to the DS1852, further enhancing compatibility between the two.

Applications

Optical Transceivers


Optical Transponders

Instrumentation and Industrial Controls

RF Power Amps

Diagnostic Monitoring

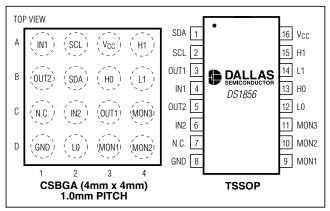
Typical Operating Circuit

Features

- ♦ SFF-8472 Compatible
- **♦** Five Monitored Channels (Temperature, V_{CC}, MON1, MON2, MON3)
- ♦ Three External Analog Inputs (MON1, MON2, MON3) That Support Internal and External Calibration
- ♦ Scalable Dynamic Range for External Analog Inputs
- **Internal Direct-to-Digital Temperature Sensor**
- **Alarm and Warning Flags for All Monitored** Channels
- ♦ Two Linear, 256-Position, Nonvolatile Temperature-**Controlled Variable Resistors**
- ♦ Resistor Settings Changeable Every 2°C
- ♦ Three Levels of Security
- **Access to Monitoring and ID Information Configurable with Separate Device Addresses**
- 2-Wire Serial Interface
- ◆ Two Buffers with TTL/CMOS-Compatible Inputs and **Open-Drain Outputs**
- ♦ Operates from a 3.3V or 5V Supply
- ◆ -40°C to +95°C Operating Temperature Range

Ordering Information

PART	RES0/RES1 RESISTANCE $(k\Omega)$	PIN-PACKAGE
DS1856E-050	50/50	16 TSSOP
DS1856E-050/T&R	50/50	16 TSSOP
DS1856B-050	50/50	16 CSBGA


Ordering Information continued at end of data sheet.

+Denotes lead-free package.

T&R denotes tape-and-reel package.

Note: All devices are specified over the -40°C to +95°C temperature range.

Pin Configurations

DALLAS // /X I //I

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltage Range on V _{CC} Relative to Ground0.5V to +6.0V	Operating Temperature Range40°C to +95°C
Voltage Range on Inputs Relative	Programming Temperature Range0°C to +70°C
to Ground*0.5V to (V _{CC} + 0.5V)	Storage Temperature Range55°C to +125°C
Voltage Range on Resistor Inputs Relative	Soldering TemperatureSee IPC/JEDEC
to Ground*0.5V to (V _{CC} + 0.5V)	J-STD-020A
Current into Resistors5mA	

^{*}Not to exceed 6.0V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

 $(T_A = -40^{\circ}C \text{ to } +95^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V _{CC}	(Note 1)	2.85		5.50	V
Input Logic 1 (SDA, SCL)	VIH	(Note 2)	0.7 x V	cc	V _{CC} + 0.3	V
Input Logic 0 (SDA, SCL)	VIL	(Note 2)	-0.3	+	0.3 x V _C C	V
Resistor Inputs (L0, L1, H0, H1)			-0.3	\	/ _{CC} + 0.3	V
Resistor Current	I _{RES}		-3		+3	mA
High-Impedance Resistor Current	IROFF			0.001	0.1	μΑ
Input Logic Lovels (INIT INIS)		Input logic 1	1.6		·	V
Input Logic Levels (IN1, IN2)		Input logic 0			0.9	V

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 2.85V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +95^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	(Note 3)		1	2	mA
Input Leakage	I _I L		-200		+200	nA
Low-Level Output Voltage	V _{OL1}	3mA sink current	0		0.4	V
(SDA, OUT1, OUT2)	V _{OL2}	6mA sink current	0		0.6	V
Full-Scale Input (MON1, MON2, MON3)		At factory setting (Note 4)	2.4875	2.5	2.5125	V
Full-Scale V _{CC} Monitor		At factory setting (Note 5)	6.5208	6.5536	6.5864	V
I/O Capacitance	C _{I/O}				10	рF
Digital Power-On Reset	POD		1.0		2.2	V
Analog Power-On Reset	POA		2.0		2.6	V

ANALOG RESISTOR CHARACTERISTICS

(V_{CC} = 2.85V to 5.5V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Position 00h Resistance (50kΩ)	T _A = +25°C	0.65	1.0	1.35	kΩ
Position FFh Resistance (50kΩ)	$T_A = +25^{\circ}C$	40	50	60	kΩ
Position 00h Resistance (30kΩ)	T _A = +25°C	0.165	0.275	0.400	kΩ
Position FFh Resistance (30k Ω)	$T_A = +25^{\circ}C$	22.5	30	37.5	kΩ
Position 00h Resistance (20kΩ)	T _A = +25°C	0.20	0.40	0.55	kΩ
Position FFh Resistance (20kΩ)	T _A = +25°C	15	20	25	kΩ
Position 00h Resistance (10kΩ)	T _A = +25°C	0.075	0.125	0.200	kΩ
Position FFh Resistance (10kΩ)	$T_A = +25^{\circ}C$	7.5	10	12.5	kΩ
Position 00h Resistance (2.5kΩ)	T _A = +25°C	0.1	0.175	0.250	kΩ
Position FFh Resistance (2.5kΩ)	T _A = +25°C	2.0	2.50	3.0	kΩ
Absolute Linearity	(Note 6)	-2		+2	LSB
Relative Linearity	(Note 7)	-1	•	+1	LSB
Temperature Coefficient	(Note 8)		50		ppm/°C

ANALOG VOLTAGE MONITORING

 $(V_{CC} = 2.85V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +95^{\circ}\text{C}, \text{ unless otherwise noted.})$

	1					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Resolution	ΔVMON			610		μV
Supply Resolution	ΔVCC			1.6		mV
Input/Supply Accuracy (MON1, MON2, MON3, VCC)	Acc	At factory setting		0.25	0.5	% FS (full scale)
Update Rate for MON1, MON2, MON3, Temp, or VCC	tframe			47	60	ms
Input/Supply Offset (MON1, MON2, MON3, V _{CC})	Vos	(Note 14)		0	5	LSB

DIGITAL THERMOMETER

(V_{CC} = 2.85V to 5.5V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Thermometer Error	T _{ERR}	-40°C to +95°C			±3.0	°C

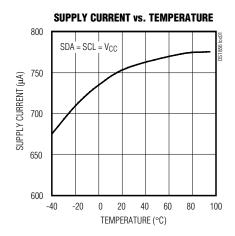
NONVOLATILE MEMORY CHARACTERISTICS

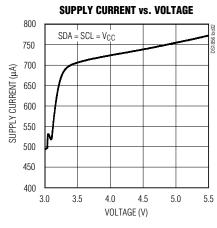
 $(V_{CC} = 2.85V \text{ to } 5.5V)$

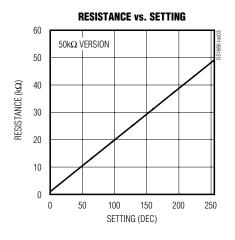
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
EEPROM Writes		+70°C (Note 14)	50,000			Writes

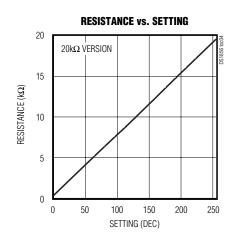
AC ELECTRICAL CHARACTERISTICS

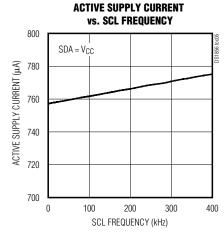
 $(V_{CC} = 2.85V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +95^{\circ}\text{C}, \text{ unless otherwise noted. See Figure 6.})$

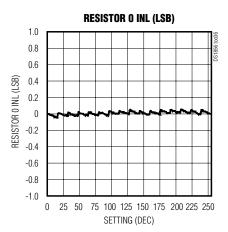

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
SCI Clock Fraguency (Note 0)	foor	Fast mode	0		400	kHz	
SCL Clock Frequency (Note 9)	fSCL	Standard mode	0		100	K⊓Z	
Bus Free Time Between STOP and	A	Fast mode	1.3				
START Condition (Note 9)	tBUF	Standard mode	4.7			μs	
Hold Time (Repeated)		Fast mode	0.6				
START Condition (Notes 9, 10)	thd:Sta	Standard mode	4.0			μs	
LOW Paried of CCL Clask (Nata O)		Fast mode	1.3				
LOW Period of SCL Clock (Note 9)	t _{LOW}	Standard mode	4.7			μs	
		Fast mode	0.6			μs	
HIGH Period of SCL Clock (Note 9)	tHIGH	Standard mode	4.0				
Data Hald Time (Nates 0, 11, 10)	thd:dat	Fast mode	0		0.9		
Data Hold Time (Notes 9, 11, 12)		Standard mode	0			μs	
Data Catina Tima (Nata O)	4.	Fast mode	100				
Data Setup Time (Note 9)	tsu:dat	Standard mode	250			ns	
CTART Cature Times (Nate O)		Fast mode	0.6				
START Setup Time (Note 9)	tsu:sta	Standard mode	4.7			μs	
Rise Time of Both SDA and SCL	4-	Fast mode	20 + 0.10	В	300		
Signals (Note 13)	t _R	Standard mode	20 + 0.10	Св	1000	ns	
Fall Time of Both SDA and SCL	4_	Fast mode	20 + 0.10	В	300		
Signals (Note 13)	t⊨	Standard mode	20 + 0.10	В	300	ns	
Catura Times for CTOD Candition		Fast mode	0.6				
Setup Time for STOP Condition	tsu:sto	Standard mode	4.0	_		μs	
Capacitive Load for Each Bus Line	C _B	(Note 13)			400	рF	
EEPROM Write Time	tw			10	20	ms	

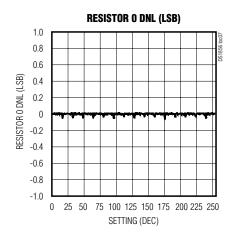

- Note 1: All voltages are referenced to ground.
- Note 2: I/O pins of fast-mode devices must not obstruct the SDA and SCL lines if V_{CC} is switched off.
- Note 3: SDA and SCL are connected to V_{CC} and all other input signals are connected to well-defined logic levels.
- Note 4: Full scale is user programmable. The maximum voltage that the MON inputs read is approximately full scale, even if the voltage on the inputs is greater than full scale.
- Note 5: This voltage defines the maximum range of the analog-to-digital converter voltage, not the maximum V_{CC} voltage.
- **Note 6:** Absolute linearity is the difference of measured value from expected value at DAC position. The expected value is a straight line from measured minimum position to measured maximum position.
- **Note 7:** Relative linearity is the deviation of an LSB DAC setting change vs. the expected LSB change. The expected LSB change is the slope of the straight line from measured minimum position to measured maximum position.
- Note 8: See the Typical Operating Characteristics.
- Note 9: A fast-mode device can be used in a standard-mode system, but the requirement t_{SU:DAT} > 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{RMAX} + t_{SU:DAT} = 1000ns + 250ns = 1250ns before the SCL line is released.

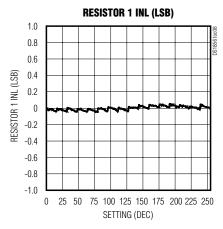

- Note 10: After this period, the first clock pulse is generated.
- Note 11: The maximum tho:DAT only has to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.
- Note 12: A device must internally provide a hold time of at least 300ns for the SDA signal (see the V_{IH MIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- Note 13: C_B—total capacitance of one bus line, timing referenced to 0.9 x V_{CC} and 0.1 x V_{CC}.
- Note 14: Guaranteed by design.

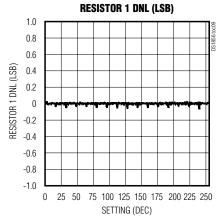

Typical Operating Characteristics

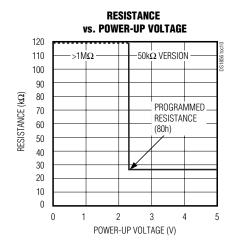

 $(V_{CC}=5.0V, T_A=+25^{\circ}C, \text{ for both } 50\text{k}\Omega \text{ and } 20\text{k}\Omega \text{ versions, unless otherwise noted.})$

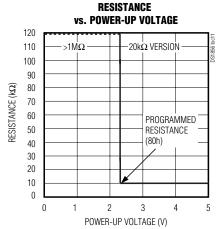


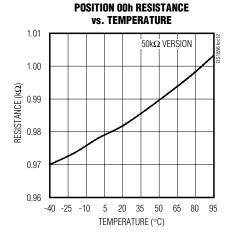


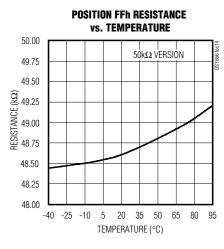


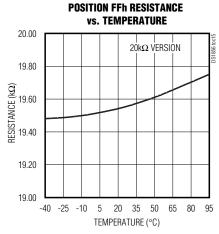


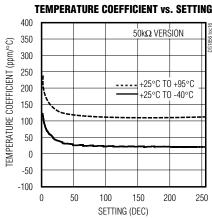

Typical Operating Characteristics (continued)

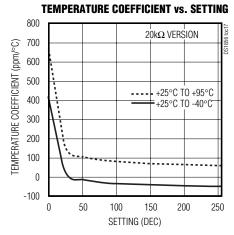

 $(V_{CC} = 5.0V, T_A = +25^{\circ}C, \text{ for both } 50k\Omega \text{ and } 20k\Omega \text{ versions, unless otherwise noted.})$

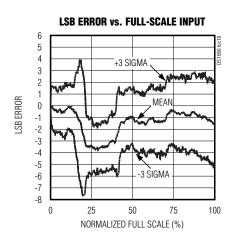


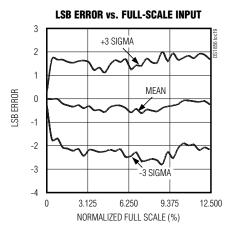





Typical Operating Characteristics (continued)


(V_{CC} = 5.0V, T_A = +25°C, for both $50k\Omega$ and $20k\Omega$ versions, unless otherwise noted.)





Pin Description

PIN	BALL	NAME	FUNCTION
1	B2	SDA	2-Wire Serial Data I/O Pin. Transfers serial data to and from the device.
2	A2	SCL	2-Wire Serial Clock Input. Clocks data into and out of the device.
3	C3	OUT1	Open-Drain Buffer Output
4	A1	IN1	TTL/CMOS-Compatible Input to Buffer
5	B1	OUT2	Open-Drain Buffer Output
6	C2	IN2	TTL/CMOS-Compatible Input to Buffer
7	C1	N.C.	No Connection
8	D1	GND	Ground
9	D3	MON1	External Analog Input
10	D4	MON2	External Analog Input
11	C4	MON3	External Analog Input
12	D2	LO	Low-End Resistor 0 Terminal. It is not required that the low-end terminals be connected to a potential less than the high-end terminals of the corresponding resistor. Voltage applied to any of the resistor terminals cannot exceed the power-supply voltage, V _{CC} , or go below ground.
13	В3	H0	High-End Resistor 0 Terminal. It is not required that the high-end terminals be connected to a potential greater than the low-end terminals of the corresponding resistor. Voltage applied to any of the resistor terminals cannot exceed the power-supply voltage, V _{CC} , or go below ground.
14	B4	L1	Low-End Resistor 1 Terminal
15	A4	H1	High-End Resistor 1 Terminal
16	A3	Vcc	Supply Voltage

Detailed Description

The user can read the registers that monitor the V_{CC} , MON1, MON2, MON3, and temperature analog signals. After each signal conversion, a corresponding bit is set that can be monitored to verify that a conversion has occurred. The signals also have alarm and warning flags that notify the user when the signals go above or below the user-defined value. Interrupts can also be set for each signal.

The position values of each resistor can be independently programmed. The user can assign a unique value to each resistor for every 2°C increment over the -40°C to +102°C range.

Two buffers are provided to convert logic-level inputs into open-drain outputs. Typically, these buffers are used to implement transmit (Tx) fault and loss-of-signal (LOS) functionality. Additionally, OUT1 can be asserted in the event that one or more of the monitored values go beyond user-defined limits.

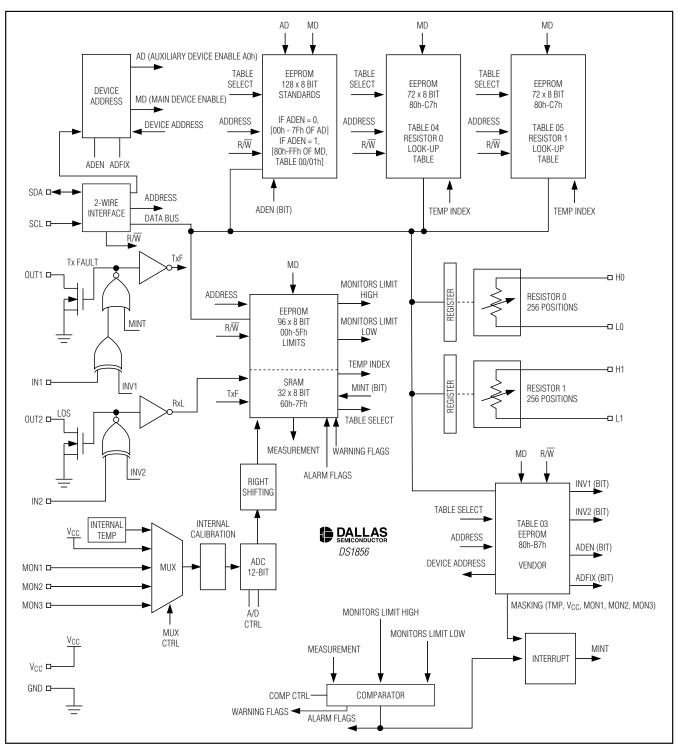


Figure 1. Block Diagram

Table 1. Scales for Monitor Channels at Factory Setting

SIGNAL	+FS SIGNAL	+FS (hex)	-FS SIGNAL	-FS (hex)
Temperature	+127.984°	7FFC	-128°C	8000
Vcc	6.5528V	FFF8	OV	0000
MON1	2.4997V	FFF8	OV	0000
MON2	2.4997V	FFF8	OV	0000
MON3	2.4997V	FFF8	OV	0000

Table 2. Signal Comparison

SIGNAL	FORMAT
Vcc	Unsigned
MON1	Unsigned
MON2	Unsigned
MON3	Unsigned
Temperature	Two's complement

Monitored Signals

Each signal (V_{CC}, MON1, MON2, MON3, and temperature) is available as a 16-bit value with 12-bit accuracy (left-justified) over the serial bus. See Table 1 for signal scales and Table 2 for signal format. The four LSBs should be masked when calculating the value. The 3 LSBs are internally masked with 0s.

The signals are updated every frame rate (t_{frame}) in a round-robin fashion.

The comparison of all five signals with the high and low user-defined values are done automatically. The corresponding flags are set to 1 within a specified time of the occurrence of an out-of-limit condition.

Calculating Signal Values

The LSB = $100\mu V$ for V_{CC} , and the LSB = $38.147\mu V$ for the MON signals when using factory default settings.

Monitor/Vcc Bit Weights

M	ISB	2 ¹⁵	214	2 ¹³	212	211	210	2 ⁹	28
L	SB	27	26	25	24	23	22	21	20

VCC Conversion Examples

MSB (BIN)	LSB (BIN)	VOLTAGE (V)
10000000	10000000	3.29
11000000	11111000	4.94

Table 3. Look-Up Table Address for Corresponding Temperature Values

TEMPERATURE (°C)	CORRESPONDING LOOK-UP TABLE ADDRESS
<-40	80h
-40	80h
-38	81h
-36	82h
-34	83h
_	_
+98	C5h
+100	C6h
+102	C7h
>+102	C7h

Monitor Conversion Example

MSB (BIN)	LSB (BIN)	VOLTAGE (V)
11000000	00000000	1.875
10000000	10000000	1.255

To calculate VCC, convert the unsigned 16-bit value to decimal and multiply by $100\mu V$.

To calculate MON1, MON2, or MON3, convert the unsigned 16-bit value to decimal and multiply by $38.147\mu V$.

To calculate the temperature, treat the two's complement value binary number as an unsigned binary number, then convert to decimal and divide by 256. If the result is greater than or equal to 128, subtract 256 from the result.

Temperature: high byte: -128°C to +127°C signed; low byte: 1/256°C.

Temperature Bit Weights

S	2 ⁶	2 ⁵	24	23	22	21	20
2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8

Temperature Conversion Examples

MSB (BIN)	LSB (BIN)	TEMPERATURE (°C)
01000000	00000000	+64
01000000	00001111	+64.059
01011111	00000000	+95
11110110	00000000	-10
11011000	00000000	-40

Table 4. ADEN Address Configuration

ADEN (ADDRESS ENABLE)	NO. OF SEPARATE DEVICE ADDRESSES	ADDITIONAL INFORMATION			
0	2	See Figure 2			
1	1 (Main Device Only)	See Figure 3			

Table 5. ADEN and ADFIX Bits

ADEN	ADFIX	AUXILIARY ADDRESS	MAIN ADDRESS
0	0	A0h	A2h
0	1	A0h	EEPROM (Table 03, 8Ch)
1	0	_	A2h
1	1	_	EEPROM (Table 03, 8Ch)

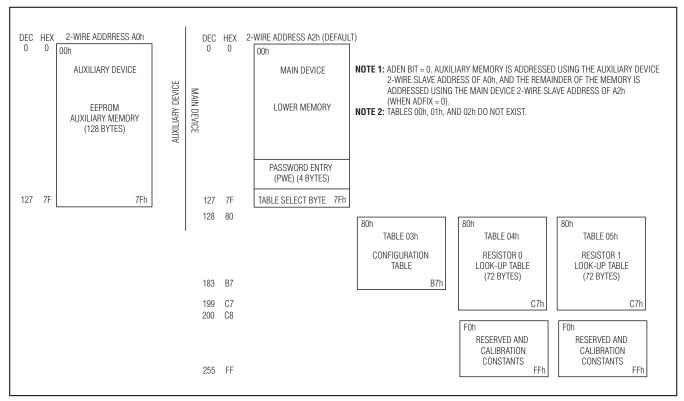


Figure 2. Memory Organization, ADEN = 0

Variable Resistors

The value of each variable resistor is determined by a temperature-addressed look-up table, which can assign a unique value (00h to FFh) to each resistor for every 2°C increment over the -40°C to +102°C range (see Table 3). See the *Temperature Conversion* section for more information.

The variable resistors can also be used in manual mode. If the TEN bit equals 0, the resistors are in manual mode and the temperature indexing is disabled.

The user sets the resistors in manual mode by writing to addresses 82h and 83h in Table 03 to control resistors 0 and 1, respectively.

Memory Description

The memory of the DS1856 is divided into two areas referred to as the Main Device and the Auxiliary Device. The Main Device comprises all of the DS1856 specific memory while the Auxiliary Device consists of 128 bytes of general-purpose EEPROM and is especially useful in GBIC applications. Main and Auxiliary

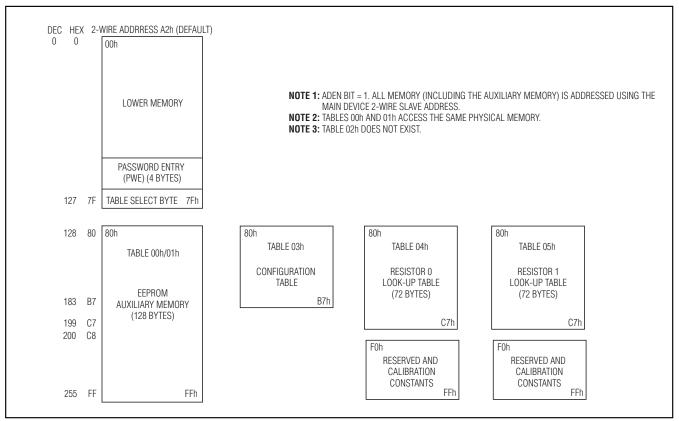


Figure 3. Memory Organization, ADEN = 1

memories can be accessed by two separate 2-wire slave addresses (see Table 4). The Main Device address is A2h (or determined by the value in Table 03, byte 8Ch, when ADFIX = 1) and the Auxiliary Device address is A0h (fixed). A configuration bit, ADEN (Table 03, byte 89h, bit 5), determines whether the DS1856 uses one or two 2-wire slave addresses. This feature can be used to save component count in SFF applications or other applications where both GBIC and monitoring functions are implemented and two device addresses are needed.

The memory organization for ADEN = 0 is shown in Figure 2. In this configuration, the 128 bytes of Auxiliary Device EEPROM are located at memory locations 00h to 7Fh and accessed using the Auxiliary Device 2-wire slave address of A0h (fixed). The remainder of the DS1856's memory is accessed using the Main Device address.

The memory organization of the second configuration, ADEN = 1, is shown in Figure 3. In this configuration, all

of the DS1856's memory including the Auxiliary memory is accessed using only the Main Device address. The Auxiliary Device memory is mapped into Table 00 and Table 01 in the Main Device. Both tables map to the same block of physical memory. This is done to improve the compatibility between previous members of this IC family such as the DS1858/DS1859 and the DS1852. In this configuration, the DS1856 ignores communication using the Auxiliary Device address.

The value of the Main Device address can be changed to a value other than the default value of A2h (see data sheet Table 5). There can be up to 128 devices sharing a common 2-wire bus, with each device having its own unique address. To change the Main Device address, first write the desired value to the Chip Address byte (Table 03, byte 8Ch). Then, enable the new address by setting ADFIX to a 1. Subsequent 2-wire communication must be performed using the new Main Device address. When ADFIX = 0, the Chip Address byte is ignored, and the Main Device address is set to A2h.

The DS1856 2-wire interface uses 8-bit addressing. which allows up to 256 bytes to be addressed traditionally on a given 2-wire slave address. However, since the Main Device contains more than 256 bytes, a table scheme is used. The lower 128 bytes of the Main Device, memory locations 00h to 7Fh, function as expected and are independent of the currently selected table. Byte 7Fh is the Table Select byte. This byte determines which memory table will be accessed by the 2-wire interface when address locations 80h to FFh are accessed. Memory locations 80h to FFh are accessible only through the Main Device address. The Auxiliary Device address has no access to the tables, but the Auxiliary Device memory can be mapped into the Main Device's memory space (by setting ADEN = 1). Valid values for the Table Select byte are shown in the table below.

Table 6. Table Select Byte

TABLE SELECT BYTE	TABLE NAME					
00	Auxiliary Device Memory					
01	(When ADEN = 1)					
02	Does Not Exist					
03	Configuration					
04	Resistor 0 Look-up Table					
05	Resistor 1 Look-up Table					

Before attempting to read and write any of the bits or bytes mentioned in this section, it is important to look at the memory map provided in a subsequent section to verify what level of password is required. Password protection is described in the following section.

Password Protection

The DS1856 uses two 4-byte passwords to achieve three levels of access to various memory locations. The three levels of access are:

User Access: This is the default state after power-up. It allows read access to standard monitoring and status functions.

Level 1 Access: This allows access to customer data table (Tables 00 and 01) in addition to everything granted by User access. This level is granted by entering Password 1 (PW1).

Level 2 Access: This allows access to all memory, settings, and features, in addition to everything granted by Level 1 and User access. This level is granted by entering Password 2 (PW2).

To obtain a particular level of access, the corresponding password must be entered in the Password Entry

(PWE) bytes located in the Main Device at 7Bh to 7Eh. The value entered is compared to both the PW1 and PW2 settings located in Table 03, bytes B0h to B3h and Table 03, bytes B4h to B7h, respectively, to determine if access should be granted. Access is granted until the password is changed or until power is cycled.

Writing PWE can be done with any level of access, although PWE can never be read.

Writing PW1 and PW2 requires PW2 access. However, PW1 and PW2 can never be read, even with PW2 access.

On power-up, PWE is set to all 1s (FFFFh). As long as neither of the passwords are ever changed to FFFFh, then User access is the power-up default. Likewise, password protection can be intentionally disabled by setting the PW2 password to FFFFh.

Memory Map

The following table is the legend used in the memory map to indicate the access level required for read and write access.

Each table in the following memory map begins with a higher level view of a particular portion of the memory showing information such as row (8 bytes) and byte names. The tables are then followed, where applicable, by an Expanded Bytes table, which shows bit names and values. Furthermore, both tables use the permission legend to indicate the access required on a row, byte, and bit level.

The memory map is followed by a *Register Description* section, which describes bytes and bits in further detail.

Table 7. Password Permission

PERMISSION	READ	WRITE
<0>		n the row is different than so look at each byte nissions.
<1>	all	PW2
<2>	all	NA
<3>	all	all (The part also writes to this byte.)
<4>	PW2	PW2 + mode_bit
<5>	all	all
<6>	NA	all
<7>	PW1	PW1
<8>	PW2	PW2
<9>	NA	PW2
<10>	PW2	NA
<11>	all	PW1

Memory Map

																•				
						L	OWER	МЕМО	RY											
Row	Row	Word 0			Word 0 Word 1				Wo	rd 2			Wo	rd 3						
(hex)	Name	Byte	0/8	Byte	1/9	Byte	e 2/A	Byte	3/B	Byte	4/C	Byte	e 5/D	Byte	e 6/E	Byte	e 7/F			
00	<1>Threshold ₀	Т	Temp Al				Temp A	larm Lo)	Temp Warn Hi			i		Temp \	Varn Lo	arn Lo			
08	<1>Threshold ₁		V _{CC} Ala	arm Hi			V _{CC} Al	arm Lo		V _{CC} Warn Hi					V _{CC} W	arn Lo	ırn Lo			
10	<1>Threshold ₂	N	Mon1 A	larm Hi			Mon1 A	larm Lo)		Mon1 \	Warn H	i		Mon1 V	Varn Lo)			
18	<1>Threshold3	N	Mon2 A	larm Hi			Mon2 A	larm Lo)		Mon2 \	Warn H	i		Mon2 V	Varn Lo)			
20	<1>Threshold4	N	Mon3 A	larm Hi			Mon3 A	larm Lo)		Mon3 \	Warn H	i		Mon3 V	Varn Lo)			
28	<1>user ROM	E	E	Е	Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	Е	E			
30	<1>user ROM	E	E	Е	Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	Е	E			
38	<1>user ROM	E	E	Е	Ε	Е	E	Е	E	Е	E	Е	E	Е	E	Е	E			
40	<1>user ROM	E	E	Е	Ε	Е	E	Е	E	Е	E	E	E	Е	E	Е	E			
48	<1>user ROM	E	E	Е	Ε	Е	E	Е	E	Е	E	E	E	Е	E	Е	E			
50	<1>user ROM	E	E	Е	Ε	Е	E	Е	E	Е	E	E	E	Е	E	Е	E			
58	<1>user ROM	El	E	Е	Έ	Е	E	EE		EE E		EE EE		EE		Е	E	Е	EE	
60	<2>Values ₀		Temp	Value			Vcc \	Value			Mon1	Value			Mon2	Value				
68	<0>Values ₁	4	<2>Mon3	3 Value			<2>Res	served			<2>Res	served		<0>S1	tatus	<3>Up	odate			
70	<2>Alrm Wrn	Alar	m ₁	Ala	rm ₀	Rese	erved	Rese	erved	Wa			arn ₀	Rese	erved	Rese	erved			
78	<0>Table Select	<6>Rese	erved	<6>Res	erved	<6>Res	served		<6>PW	E msb		<6>PW		/E Isb		<5>Tb	ol Sel			
	•					EX	PAND	ED BY1	TES			ı								
Byte	Byte	Bit	7	В	it6	В	it5	Bi	t4	В	t3	Bit2		В	it1	В	itO			
(hex)	Name	bit ₁₅	bit ₁₄	bit13	bit ₁₂	bit11	bit ₁₀	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit ₁	bit ₀			
	User EE	EE		Е	Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	Е	E			
	Temp Alarm	S	2^{6}	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°	2 ⁻¹	2-2	2-3	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8			
	Temp Warn	S	2^{6}	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°	2-1	2-2	2-3	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8			
	Volt Alarm	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°			
	Volt Warn	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°			
28	User ROM	EE		Е	E	Е	E	Е	E	Е	E	Е	E	Е	E	Е	E			
30	User ROM	EE		Е	Ε	Е	E	Е	E	Е	E	Е	E	Е	E	EE				
38	User ROM	EE		Е	Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	EE				
40	User ROM	EE	Ē	Е	Έ	Е	E	Е	E	Е	E	Е	E	Е	E	Е	EE			
48	User ROM	EE	EE		Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	Е	ΞE			
50	User ROM	EE	EE		Ε	Е	Ε	Е	E	Е	E	Е	E	Е	Ε	Е	ΞE			
58	User ROM	EE		Е	Ε	Е	Ε	Е	E	Е	E	Е	E	EE		EE				

_____Memory Map (continued)

60	Temp Value	S	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°	2 ⁻¹	2-2	2 ⁻³	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8		
62	V _{CC} Value	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º		
64	Mon1 Value	215	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º		
66	Mon2 Value	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°		
68	Mon3 Value	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2°	2 ⁸	27	2 ⁶	25	2 ⁴	2 ³	2 ²	2 ¹	2º		
6E	Status	<2>RI	niz	<11>Sc	<11>SoftHiz		<2>Reserved		<2>Reserved		<2>Reserved		TxF	<2>RxL		<2>Rdyb			
6F	Update	Temp	Rdy	Vcc	V _{CC} Rdy		Mon1 Rdy		Mon2 Rdy		Mon3 Rdy		erved	Reserved		Reserved			
70	Alarm ₁	Temp) Hi	Tem	p Lo	V _{CC} Hi		VCC	; Lo	Mor	11 Hi	Mon	1 Lo	Mon2 Hi		Mon2 Lo			
71	Alarm ₀	Mon3	3 Hi	Mon	3 Lo	Reserved		Rese	erved	Reserved		Reserved		Reserved		Mint			
74	Warn ₁	Temp) Hi	Tem	p Lo	VC	V _{CC} Hi		; Lo	Mor	11 Hi	Mon	1 Lo	Mon	ı2 Hi	Mon	2 Lo		
75	Warn ₀	Mon3	3 Hi	Mon	3 Lo	Rese	erved	Rese	erved	Rese	erved	Rese	erved	Rese	erved	Rese	erved		
7B	PWE msb	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	222	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶		
7D	PWE Isb	215	2 ¹⁴	2 ¹³	212	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	25	2 ⁴	2 ³	2 ²	2 ¹	2º		
7F	Tbl Sel	27		2 ⁶		2 ⁶ 2 ⁵		2	2 ⁴		2 ⁴ 2 ³		2 ²		2 ¹		2	20	

	AUXILIARY (VALID WHEN ADEN = 0)									
Row	Row	Wo	ord 0	Word 1		Wor	rd 2	Word 3		
(hex)	Name	Byte 0/8	Byte 1/9	Byte 2/A	Byte 3/B	Byte 4/C	Byte 5/D	Byte 6/E	Byte 7/F	
00-7F	<1>EE	EE	EE	EE	EE	EE	EE	EE	EE	
			TABL	E 00/01 (VAL	ID WHEN A	DEN = 1)				
Row	Row	Wo	rd 0	Word 1		Word 2		Word 3		
(hex)	Name	Byte 0/8	Byte 1/9	Byte 2/A	Byte 3/B	Byte 4/C	Byte 5/D	Byte 6/E	Byte 7/F	
80-FF	<7>EE	EE	EE	EE	EE	EE	EE	EE	EE	

Memory Map (continued)

						TABL	E 03 (C	ONFIG	URAT	ION)							
Row	Row		Woi	rd 0		Word 1			Word 2			Word 3					
(hex)	Name	Byte	e 0/8	Byte	e 1/9	Byte	e 2/A	Byte	3/B	Byte	4/C	Byte	5/D	Byt	e 6/E	Byt	e 7/F
80	<0>Config ₀	<8>N	1ode	<4>Ti	ndex	<4>F	Res0	<4>R	es1	<8>Res	erved	<8>Res	served	<8>Re	served	<8>Re	served
88	<8>Config ₁	Int E	nable	Со	nfig	Rese	erved	Rese	erved	chip	addr	Rese	erved	Rs	hift ₁	Rs	shift ₀
90	<8>Scale ₀		Rese	erved			Vcc S	Scale			Mon1	Scale			Mon2	Scale	
98	<8>Scale ₁		Mon3	Scale			Rese	rved			Res	erved			Res	erved	
A0	<8>Offset ₀		Rese	erved			Vcc C	Offset			MON1	Offset			MON2	Offset	
A8	<8>Offset ₁		MON3	Offset			Rese	rved			Res	erved		Int	ternal Te	mp Of	fset*
В0	<9>Pwd Value		PW1	msb			PW1	Isb			PW2	msb			PW	2 Isb	
						E	EXPAN	DED B	YTES								
Byte	Byte	Bi	it7	В	t6	В	it5	Ві	t4	Bi	t3	Bi	t2	В	it1	Е	3itO
(hex)	Name	bit ₁₅	bit ₁₄	bit ₁₃	bit ₁₂	bit ₁₁	bit ₁₀	bit ₉	bit ₈	bit ₇	bit ₆	bit ₅	bit4	bit3	bit ₂	bit ₁	bit ₀
80	Mode	Rese	erved	Rese	erved	Rese	erved	Rese	erved	Rese	rved	Rese	erved	TI	EN	А	.EN
81	Tindex	2	2 ⁷	2)6 -	2	2 ⁵	2) ⁴	2	3	2 ²		2 ¹		2°	
82	Res0	2	2 ⁷	2)6 -	2 ⁵ 2 ⁴			2 ³ 2 ²		2 ¹		2º				
83	Res1	2	<u>2</u> 7	2	2 ⁶ 2 ⁵		2 ⁵	2) ⁴	2 ³		2 ²		2 ¹		2º	
88	Int Enable	Te	mp	Vcc		Mon1 Mon2		n2	Mon3 Reserved		Res	erved	Reserved				
89	Config	Rese	erved	Reserved		ADEN			FIX	Reserved		Rese			v 1		ıv 2
8C	Chip Addr	2	27	2 ⁶		2 ⁵		2	24	2	3	2	2	2	2 ¹		2º
8E	Rshift ₁	Rese	erved	Mon1 ²		Mo	n1¹	Mo	n1º	Rese	rved	Mo	n2²	Mo	on2¹	M	on2º
8F	Rshift ₀	Rese	erved		n3²	Mo	n3¹	Mo	n3º	Rese	rved	Rese	rved	Res	erved	Res	erved
92	Vcc Scale	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2°	2 ⁸	27	2^{6}	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
94	Mon1 Scale	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
96	Mon2 Scale	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
98	Mon3 Scale	2 ¹⁵	2 ¹⁴	2 ¹³	212	211	2 ¹⁰	2°	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
A2	V _{CC} Offset	S	S	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	210	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2 ²
A4	Mon1 Offset	S	S	2 ¹⁵	2 ¹⁴	2 ¹³	212	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2 ²
A6	Mon2 Offset	S	S	2 ¹⁵	2 ¹⁴	2 ¹³	212	211	210	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²
A8	Mon3 Offset	S	S	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	210	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²
AE	Temp Offset*	S	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º	2-1	2-2	2-3	2-4	2 ⁻⁵	2-6
В0	PW1 msb	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	227	2 ²⁶	225	224	2 ²³	222	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
B2	PW1 lsb	2 ¹⁵	214	2 ¹³	212	211	210	2°	2 ⁸	27	2 ⁶	25	24	2 ³	2 ²	2 ¹	2º
B4	PW2 msb	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	225	224	2 ²³	222	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
B6	PW2 lsb	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º

^{*}The final result must be XOR'ed with BB40h.

__Memory Map (continued)

			TABLE (04 (LOOKUP	TABLE FOR	RESISTOR 0)				
Row	Row	Wor	d 0	Wor	rd 1	Wor	d 2	Word 3		
(hex)	Name	Byte 0/8	Byte 1/9	Byte 2/A	Byte 3/B	Byte 4/C	Byte 5/D	Byte 6/E	Byte 7/F	
80	<8>LUT									
88	<8>LUT									
90	<8>LUT									
98	<8>LUT									
A0	<8>LUT									
A8	<8>LUT									
В0	<8>LUT									
B8	<8>LUT									
C0	<8>LUT									
C8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	
D0		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	
D8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	
E0		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	
E8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	
F0		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
F8	<10>Res0 data			Resistor 0 Ca	libration Cons	tants (see dat	a sheet Table	8)		
				EXPAN	DED BYTES					
Byte (hex)	Byte Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
80-C7	Res0	27	2 ⁶	2 ⁵	2^{4}	2 ³	2 ²	2 ¹	2°	
F8-FF	Res0 data		Resisto	or 0 Calibratio	n Constants (see data shee	t Table 8 for v	veighting)		

Memory Map (continued)

			TABLE 0	5 (LOOKUP T	ABLE FOR R	ESISTOR 1)			
Row	Row	Word 0		Word 1		Wor	rd 2	Word 3	
(hex)	Name	Byte 0/8	Byte 1/9	Byte 2/A	Byte 3/B	Byte 4/C	Byte 5/D	Byte 6/E	Byte 7/F
80	<8>LUT								
88	<8>LUT								
90	<8>LUT								
98	<8>LUT								
A0	<8>LUT								
A8	<8>LUT								
В0	<8>LUT								
В8	<8>LUT								
C0	<8>LUT								
C8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
D0		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
D8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
E0		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
E8		Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
F0		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
F8	<10>Res1 data		F	Resistor 1 Cali	bration Const	ants (see data	sheet Table 8	3)	
				EXPAND	ED BYTES				
Byte (hex)	Byte Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
80-C7	Res1	27	2^6	2^{5}	2 ⁴	2 ³	2 ²	2 ¹	2º
F8-FF	Res1 data		Resistor	r 1 Calibration	Constants (se	ee data sheet	Table 8 for we	ighting)	

DS1856

Dual, Temperature-Controlled Resistors with Internally Calibrated Monitors and Password Protection

Register Descriptions

Name	of	Ro	W

- Name of Byte <Read/Write><Volatile><Power-On-Value>
- Name of Byte...... <Read/Write><Nonvolitile><Factory-Default-Setting>

Threshold₀

- Temp High Alarm <R-all/W-pw2><NV><7FFFh> Temperature measurements above this two's complement threshold set its corresponding alarm bit.
 - Measurements below this threshold clear the alarm bit.
- *Temp Low Alarm......* <R-all/W-pw2><NV><8000h> Temperature measurements below this two's complement threshold set its corresponding alarm bit.
 - Measurements above this threshold clear the alarm bit.
- *Temp High Warning* . <R-all/W-pw2><NV><7FFFh> Temperature measurements above this two's complement threshold set its corresponding warning bit.
 - Measurements below this threshold clear the warning bit.
- Temp Low Warning .. <R-all/W-pw2><NV><8000h> Temperature measurements below this
 two's complement threshold set its corresponding warning bit.
 Measurements above this threshold clear the warning bit.

Threshold₁

- *V_{CC} High Alarm.......* <R-all/W-pw2><NV><FFFFh> Voltage measurements of the V_{CC} input above this unsigned threshold set its corresponding alarm bit.
 - Measurements below this threshold clear the alarm bit.
- VCC Low Alarm....... <R-all/W-pw2><<NV><0000h> Voltage measurements of the V_{CC} input below this unsigned threshold set its corresponding alarm bit.
 - Measurements above this threshold clear the alarm bit.
- *V_{CC} High Warning...* <R-all/W-pw2><NV><FFFFh> Voltage measurements of the V_{CC} input above this unsigned threshold set its corresponding warning
- bit. Measurements below this threshold clear the warning bit. $VCC\ Low\ Warning....$ <R-all/W-pw2><<NV><0000h> Voltage measurements of the V_{CC}
 - input below this unsigned threshold set its corresponding warning bit. Measurements above this threshold clear the warning bit.

Threshold₂

- *Mon1 High Alarm* <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon1 input above this unsigned threshold set its corresponding alarm bit.
 - Measurements below this threshold clear the alarm bit.
- Mon1 Low Alarm <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon1 input below this unsigned threshold set its corresponding alarm bit.

 Measurements above this threshold clear the alarm bit.
- *Mon1 High Warning*. <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon1 input above this unsigned threshold set its corresponding warning
- bit. Measurements below this threshold clear the warning bit.
 Mon1 Low Warning.. <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon1 input below this unsigned threshold set its corresponding warning
 - bit. Measurements above this threshold clear the warning bit.

Register Descriptions (continued)

Threshold₃

- Mon2 High Alarm <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon2 input above this unsigned threshold set its corresponding alarm bit.
 Measurements below this threshold clear the alarm bit.
- Mon2 Low Alarm <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon2 input below this unsigned threshold set its corresponding alarm bit.

Measurements above this threshold clear the alarm bit.

- Mon2 High Warning. <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon2 input above this unsigned threshold set its corresponding warning bit. Measurements below this threshold clear the warning bit.
- Mon2 Low Warning.. <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon2 input below this unsigned threshold set its corresponding warning bit. Measurements above this threshold clear the warning bit.

Threshold₄

- Mon3 High Alarm <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon3 input above this unsigned threshold set its corresponding alarm bit.

 Measurements below this threshold clear the alarm bit.
 - Mon3 Low Alarm <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon3 input below this unsigned threshold set its corresponding alarm bit.

 Measurements above this threshold clear the alarm bit.
- Mon3 High Warning. <R-all/W-pw2><NV><FFFFh> Voltage measurements of the Mon3 input above this unsigned threshold set its corresponding warning bit. Measurements below this threshold clear the warning bit.
- Mon3 Low Warning.. <R-all/W-pw2><NV><0000h> Voltage measurements of the Mon3 input below this unsigned threshold set its corresponding warning bit. Measurements above this threshold clear the warning bit.

User ROM

• User ROM...... <R-all/W-pw2><NV><00h> Nonvolatile EEPROM memory.

A2D Value₀

- *V_{CC} Meas*...... <R-all><W-NA><0000h> Unsigned voltage measurement.
- Mon1 Meas...... <R-all><W-NA><0000h> Unsigned voltage measurement.
- Mon2 Meas...... <R-all><W-NA><0000h> Unsigned voltage measurement.

Register Descriptions (continued)

A2D Value₁

•			<r-all><w-na><0000h> Unsigned voltage measurement.</w-na></r-all>					
•	Res	served	<r-all><w-na><0000h></w-na></r-all>					
•	Sta	tus	<r-all><w-see bits=""><conditional></conditional></w-see></r-all>					
	a)	Rhiz	<r-all><w-na><1b> High when resistor outputs are high impedance.</w-na></r-all>					
	b)	Soft Hiz	<r-all><w-all><0b> Setting this bit will make resistor outputs high</w-all></r-all>					
			impedance.					
	c)		<r-all><w-na><0b></w-na></r-all>					
	d)		<r-all><w-na><conditional> Reflects the logic level to be output on pin Out1.</conditional></w-na></r-all>					
	e)		<r-all><w-na><conditional> Reflects the logic level to be output on pin Out2.</conditional></w-na></r-all>					
	f)	Rdyb	<r-all><w-na>< V_{CC} dependant > Ready Bar. When the supply is</w-na></r-all>					
			above the Power-On-Analog (POA) trip point, this bit is active LOW.					
			Thus, this bit reads a logic One if the supply is below POA or too low					
			to communicate over the 2-wire bus.					
•	Up_{ϵ}	date	<r-all w-all=""><00h> Status of completed conversions. At Power-On,</r-all>					
			these bits are cleared and will be set as each conversion is completed.					
			These bits can be cleared so that a completion of a new conversion					
	`	T D1	may be verified.					
	a)		Temperature conversion is ready.					
	b)	•	VCC conversion is ready.					
	c)		Mon1 conversion is ready.					
	d)	•	Mon2 conversion is ready.					
Ctatus	e)	Mons Ray	Mon3 conversion is ready.					
Status	41		<r-all><w-na><10h> High Alarm Status bits.</w-na></r-all>					
•		*	High Alarm Status for Temperature measurement.					
	a) b)		Low Alarm Status for Temperature measurement.					
	c)		High Alarm Status for V _{CC} measurement.					
	d)		Low Alarm Status for VCC measurement. This bit is set when the VCC					
	u)	VCC L0	supply is below the POA trip point value. It clears itself when a VCC					
			measurement is completed and the value is above the low threshold.					
	e)	MON1 Hi	High Alarm Status for MON1 measurement.					
	f)		Low Alarm Status for MON1 measurement.					
	g)		High Alarm Status for MON2 measurement.					
	h)		Low Alarm Status for MON2 measurement.					
•	Ala	rm ₁	<r-all><w-na><00h> Low Alarm Status bits.</w-na></r-all>					
	a)	MON3 HI	High Alarm Status for MON3 measurement.					
	b)	MON3 Lo	Low Alarm Status for MON3 measurement.					
	c)	Mint	Maskable Interrupt. If an alarm is present and the alarm is enabled then					
			this bit is high. Otherwise this bit is a zero.					
•			<r-all><w-na><00h>.</w-na></r-all>					
•		•	<r-all><w-na><00h> High Warning Status bits.</w-na></r-all>					
	a)		High Warning Status for Temperature measurement.					
	b)		Low Warning Status for Temperature measurement.					
	c)	VCC H1	High Warning Status for V_{CC} measurement.					

Register Descriptions (continued)

•	e) MON1 Hi	Low Warning Status for V_{CC} measurement. This bit is set when the V_{CC} supply is below the POA trip point value. It clears itself when a V_{CC} measurement is completed and the value is above the low threshold. High Warning Status for MON1 measurement. Low Warning Status for MON2 measurement. High Warning Status for MON2 measurement. Low Warning Status for MON2 measurement. V_{CC} Warning Status for MON2 measurement. V_{CC} Warning Status for MON2 measurement.
	-	High Warning Status for MON3 measurement. Low Warning Status for MON3 measurement.
Table Sele	ect	
•	Reserved	<r-na><w-all><00h> <r-na><w-all><fffffffh> Password Entry. There are two passwords for the DS1856. The lower level password (PW1) has all the access of a normal user plus those made available with PW1. The higher level password (PW2) has all of the access of PW1 plus those made available with PW2. The value of the password reside in FF incide of PW2 moments.</fffffffh></w-all></r-na></w-all></r-na>
$ullet$ Config $_0$	TBL Sel	in EE inside of PW2 memory. <r-all w-all=""><00h> Table Select. The upper memory tables of the DS1856 are accessible by writing the correct table value in this register. If the device is configured to have a Table 01h then writing a 00h ora 01h in this byte will access that table.</r-all>
•		<r-pw2 w-pw2=""><nv><03h> At Power-On this bit is HIGH, which enables autocontrol of the LUT. If this bit is written to a ZERO then the resistor values are writeable by the user and the LUT recells are disabled. This allows the user to</nv></r-pw2>
	b) AEN	the user and the LUT recalls are disabled. This allows the user to interactively test their modules by manually writing resistor values. The resistors will update with the new value at the end of the write cycle. Thus both registers (Res0 and Res1) should be written in the same write cycle. The 2-wire Stop condition is the end of the write cycle. At Power-On this bit is HIGH, which enables autocontrol of the LUT. If this bit is cleared to a ZERO then the temperature calculated index value (T index) is writeable by the user and the updates of calculated indexes are disabled. This allows the user to interactively test their modules by controlling the indexing for the look-up tables. The recalled values from the LUTs will appear in the resistor registers after the next completion of a temperature conversion (just like it would happen in auto mode). Both pots will update at the same time (just like it would happen in auto mode).
•	T Index	

_Register Descriptions (continued)

•	Res0	<r-pw2><w-pw2+tenb><ffh> The base value used for Resistor 0 and recalled from Table 4 at the memory address found in T Index. This register is updated at the end of the Temperature conversion.</ffh></w-pw2+tenb></r-pw2>
•	Res1	<r-pw2><w-pw2+tenb><ffh> The base value used for Resistor 1 and recalled from Table 5 at the memory address found in T Index. This register is updated at the end of the Temperature conversion.</ffh></w-pw2+tenb></r-pw2>
•	Reserved	- This register is updated at the end of the Temperature Conversion R-pw2>< W-pw2>< 00h> SRAM.
Config ₁		
•		<r-pw2 w-pw2=""><nv><f8h> Configures the maskable interrupt for the Out1 pin.</f8h></nv></r-pw2>
	a) Temp Enable	Temperature measurements, outside of the threshold limits, are enabled to create an active interrupt on the Out1 pin.
	b) VCC Enable	. V _{CC} measurements, outside of the threshold limits, are enabled to create an active interrupt on the Out1 pin.
	c) MON1 Enable	MON1 measurements, outside of the threshold limits, are enabled to create an active interrupt on the Out1 pin.
	d) MON2 Enable	MON2 measurements, outside of the threshold limits, are enabled to create an active interrupt on the Out1 pin.
	e) MON3 Enable	MON3 measurements, outside of the threshold limits, are enabled to create an active interrupt on the Out1 pin.
	f) Reserved	
•	,	<r-pw2 w-pw2=""><nv><00h> Configure the memory location and the</nv></r-pw2>
	a) Reserved	polarity of the digital outputs.
	b) ADEN	Auxiliary Device ENable. 128 bytes of EE are addressable depending on the value of this bit. When set to a 1, the memory is located in or as Table 01h. When set to a 0, the memory is addressed by using a Device
	c) ADFIX	address of A0h and the locations in memory are 00h to 7Fh. Device Fixable Address. When this bit is set to a 1, the main memory of the DS1856 is a Device Address equal to the value found in byte <i>chip_address</i> . When this bit is set to a 0 the main memory of the DS1856 is a Device Address of A2h.
		Enable the inversion of the relationship between IN1 and OUT1. Enable the inversion of the relationship between IN2 and OUT2.
•	Chip Address	This value becomes the Device address for the main memory when <i>ADFIX</i> bit is set.
•	Right Shift ₁	Allows for right-shifting the final answer of some voltage measurements. This allows for scaling the measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct lsb.
•	Right Shift ₀	Allows for right-shifting the final answer of some voltage measurements. This allows for scaling the measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct lsb.

Register Descriptions (continued)

Scale ₀ •	MON1 Scale	<r-pw2 w-pw2=""><nv><6.5535V> Controls the Scaling or Gain of the V_{CC} measurements. <r-pw2 w-pw2=""><nv><2.500V> Controls the Scaling or Gain of the MON1 measurements. <r-pw2 w-pw2=""><2.500V> Controls the Scaling or Gain of the MON2 measurements.</r-pw2></nv></r-pw2></nv></r-pw2>
Scale ₁	MON3 Scale	<r-pw2 w-pw2=""><nv><2.500V> Controls the Scaling or Gain of the MON3 measurements.</nv></r-pw2>
Offset ₀ •	MON1 Offset	<pre><r-pw2 w-pw2=""><nv><0000h> Allows for offset control of VCC measurement if desired. <r-pw2 w-pw2=""><nv><0000h> Allows for offset control of MON1 measurement if desired. <r-pw2 w-pw2=""><nv><0000h> Allows for offset control of MON2 measurement if desired.</nv></r-pw2></nv></r-pw2></nv></r-pw2></pre>
Offset ₁ •		<r-pw2 w-pw2=""><nv><0000h> Allows for offset control of MON3 measurement if desired. <r-pw2 w-pw2=""><nv><0000h> Allows for offset control of Temp measurement if desired.</nv></r-pw2></nv></r-pw2>
PWD Val	116	
•	Password 1	<r-na w-pw2=""><nv><ffffffff> The PWE value is compared against the value written to this location to enable PW1 access. At power-on, the PWE value is set to all ones. Thus writing these bytes to all ones grants PW1 access on power-up without writing the password entry. <r-na w-pw2=""><nv><ffffffff> The PWE value is compared against the value written to this location to enable PW2 access. At power-on, the PWE value is set to all ones. Thus writing these bytes to all ones grants PW2 access on power-up without writing the password entry.</ffffffff></nv></r-na></ffffffff></nv></r-na>
LUT		
•		The unsigned value for Resistor 0. The unsigned value for Resistor 1.

Programming the Look-up Table (LUT)

The following equation can be used to determine which resistor position setting, 00h to FFh, should be written in the LUT to achieve a given resistance at a specific temperature.

$$pos(\alpha,R,C) = \frac{R - u \times \left[1 + v \times (C - 25) + w \times (C - 25)^{2}\right]}{\left(x\right) \times \left[1 + y \times (C - 25) + z \times (C - 25)^{2}\right]} - \alpha$$

R = the resistance desired at the output terminal

C = temperature in degrees Celsius

u, v, w, x₁, x₀, y, z, and α are calculated values found in the corresponding look-up tables. The variable x from the equation above is separated into x₁ (the MSB of x) and x₀ (the LSB of x). Their addresses and LSB values are given below. The variable y is assigned a value. All other variables are unsigned. Resistor 0 variables are found in Table 04, and Resistor 1 variables are found in Table 05.

When shipped from the factory, all other memory locations in the LUTs are programmed to FFh.

Table 8. Calibration Constants

ADDRESS	VARIABLE	LSB
F8h	u	2 ⁰
F9h	V	20E-6
FAh	W	100E-9
FBh	X1	2 ¹
FCh	x0	2 ⁻⁷
		2E-6 (signed)
FDh	У	8E-6 (signed) for -025 version
		4E-6 (signed) for -030 version
FEh	Z	10E-9
FFh	α	2 ⁻²

Internal Calibration

The DS1856 has two methods for scaling an analog input to a digital result. The two methods are gain and offset. Each of the inputs (VCC, MON1, MON2, and MON3) has a unique register for the gain and the offset found in Table 03h, 92h to 99h, and A2h to A9h.

To scale the gain and offset of the converter for a specific input, you must first know the relationship between the analog input and the expected digital result. The input that would produce a digital result of all zeros is the null value (normally this input is GND). The input that would produce a digital result of all ones is the full-scale (FS) value. The FS value is also found by multiplying an all-ones digital answer by the weighted LSB (e.g., since the digital reading is a 16-bit register, let us assume that the LSB of the lowest weighted bit is $50\mu V$, then the FS value is $65,535 \times 50\mu V = 3.27675V$).

A binary search is used to scale the gain of the converter. This requires forcing two known voltages to the input pin. It is preferred that one of the forced voltages is the null input and the other is 90% of FS. Since the LSB of the least significant bit in the digital reading register is known, the expected digital results are also known for both inputs (null/LSB = CNT1 and 90%FS/LSB = CNT2).

The user might not directly force a voltage on the input. Instead they have a circuit that transforms light, frequency, power, or current to a voltage that is the input to the DS1856. In this situation, the user does not need to know the relationship of voltage to expected digital result but instead knows the relationship of light, frequency, power, or current to the expected digital result.

An explanation of the binary search used to scale the gain is best served with the following example pseudocode:

/* Assume that the null input is 0.5V. */

/* In addition, the requirement for LSB is 50µV. */

FS = 65535 x 50E-6; /* 3.27675 */
CNT1 = 0.5 / 50E-6; /* 10000 */
CNT2 = 0.90 x FS / 50E-6; /* 58981.5 */

/* Thus the null input 0.5V and the 90% of FS input is 2.949075V.*/

Set the trim-offset-register to zero;

Set Right-Shift register to zero (typically zero. See the *Right-Shifting* section);

gain_result = 0h;

Clamp = FFF8h/2^(Right_Shift_Register);

For n = 15 down to 0

begin