

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DS2016 2k x 8 3V/5V Operation Static RAM

www.maxim-ic.com

FEATURES

- Low-power CMOS design
- Standby current
 - 50nA max at $t_A = +25^{\circ}C V_{CC} = 3.0V$
 - 100nA max at $t_A = +25$ °C $V_{CC} = 5.5$ V
 - $-1 \mu A \text{ max at } t_A = +60 ^{\circ} \text{C V}_{CC} = 5.5 \text{V}$
- Full operation for $V_{CC} = 5.5V$ to 2.7V
- Data retention voltage = 5.5V to 2.0V
- Fast 5V access time
 - DS2016-100
 - 100ns
- Reduced-speed 3V access time
 - DS2016-100 250ns
- Operating temperature range of -40°C to +85°C
- Full static operation
- TTL compatible inputs and outputs over voltage range of 5.5V to 2.7V
- Available in 24-pin DIP and 24-pin SO packages
- Suitable for both battery operated and battery backup applications

PIN ASSIGNMENT

A7 🗀	1	24 🗆 V _{CC}
A6 🗆	2	23 🔲 A8
A5	3	22 🔲 A9
A4	4	21 WE
A3 🗌	5	20 🔲 ŌE
A2	6	19 🔲 A10
A1 🗌	7	18 🔲 🗷
A0 🗆	8	17 🔲 DQ7
DQ0	9	16 🔲 DQ6
DQ1	10	15 🔲 DQ5
DQ2	11	14 🔲 DQ4
GND	12	13 🔲 DQ3

DS2016 24-Pin DIP (600mil) DS2016R 24-Pin SO (300mil)

PIN DESCRIPTION

 $\begin{array}{lll} A0 \text{ to } A10 & - \text{ Address Inputs} \\ DQ0 \text{ to } DQ7 & - \text{ Data Input/Output} \\ \hline \overline{\text{CE}} & - \text{ Chip Enable Input} \\ \hline \overline{\text{WE}} & - \text{ Write Enable Input} \\ \hline \overline{\text{OE}} & - \text{ Output Enable Input} \end{array}$

V_{CC} - Power Supply Input 2.7V - 5.5V

GND - Ground

DESCRIPTION

The DS2016 2k x 8 3V/5V Operation Static RAM is a 16,384-bit, low-power, fully static random access memory organized as 2048 words by 8 bits using CMOS technology. The device operates from a single power supply with a voltage input between 2.7V and 5.5V. The chip enable input ($\overline{\text{CE}}$) is used for device selection and can be used in order to achieve the minimum standby current mode, which facilitates both battery operated and battery backup applications. The device provides access times as fast as 100ns when operated from a 5V power supply input and also provides relatively good performance of 250ns access while operating from a 3V input. The device maintains TTL-level inputs and outputs over the input voltage range of 2.7V to 5.5V. The DS2016 is most suitable for low-power applications where battery operation or battery backup for nonvolatility is required. The DS2016 is a JEDEC-standard 2k x 8 SRAM and is pin-compatible with ROM and EPROM of similar density.

1 of 8 032706

OPERATION MODE

MODE	CE	ŌE	WE	A0-A10	DQ-DQ7	POWER
READ	L	L	Н	STABLE	DATA OUT	I_{CCO}
WRITE	L	X	L	STABLE	DATA IN	I_{CCO}
DESELECT	L	Н	Н	X	HIGH-Z	I_{CCO}
STANDBY	Н	X	X	X	HIGH-Z	I_{CCS}

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING
V_{CC}	Power Supply Voltage	-0.3V to +7.0V
V_{IN} , $V_{\mathrm{I/O}}$	Input, Input/Output Voltage	-0.3 to $V_{CC} + 0.3V$
T_{STG}	Storage Temperature	-55°C to +125°C
T_{OPR}	Operating Temperature	-40°C to +85°C
T _{SOLDER}	Soldering Temperature/Time	IPC/JEDEC J-STD-020

CAPACITANCE $(T_A =$ +25°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		5	10	pF	
Input/Output Capacitance	$C_{I/O}$		5	12	pF	

+5-VOLT OPERATION

RECOMMENDED DC OPERATING CONDITIONS $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Input High Voltage	$ m V_{IH}$	2.0		$V_{CC} + 0.3$	V	
Input Low Voltage	$V_{ m IL}$	-0.3		0.8	V	
Data Retention Voltage	V_{DR}	2.0		5.5	V	

$(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 5V \pm 10\%)$ **DC CHARACTERISTICS**

		(- 7		,	- 00	/
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	$I_{ m IL}$	$0V \le V_{IN} \le V_{CC}$			± 0.1	μΑ
I/O Leakage Current	I_{LO}	$\overline{\text{CE}} = V_{\text{IH}}, 0V \le V_{\text{IO}} \le V_{\text{CC}}$			± 0.5	μΑ
Output High Current	I _{OH}	$V_{OH} = 2.4V$	-1.0			mA
Output Low Current	I_{OL}	$V_{OL} = 0.4V$	4.0			mA
Standby Current	I _{CCS1}	$\overline{\text{CE}} = 2.0 \text{V}$			0.3	mA
Standby Current	I _{CCS2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.5 \text{V}, t_{\text{A}} = +60^{\circ} \text{C}$			1	μА
Standby Current	I _{CCS2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.5 \text{V}, t_{\text{A}} = +25^{\circ}\text{C}$			100	nA
Operating Current	I_{CCO}	$\overline{\text{CE}} = 0.8\text{V}, 200\text{ns cycle}$			55	mA

AC CHARACTERISTICS READ CYCLE $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$

PARAMETER	SYMBOL	DS2016-100				UNITS	NOTES	
TAKAMETEK		MIN	TYP	MAX			UNITS	NOTES
Read Cycle Time	t_{RC}	100					ns	
Access Time	t_{ACC}			100			ns	
OE to Output Valid	t_{OE}			50			ns	
CE to Output Valid	t_{CO}			100			ns	
CE or OE to Output Active	$t_{\rm COE}$	5					ns	
Output High-Z from Deselection	t _{OD}	5		35			ns	
Output Hold from Address Change	t _{OH}	5					ns	

AC CHARACTERISTICS WRITE CYCLE $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$

PARAMETER	SYMBOL	DS2016-100				UNITS		NOTES
	SIMBOL	MIN	TYP	MAX			UNITS	NOTES
Write Cycle Time	t_{WC}	100					ns	
Write Pulse Width	t_{WP}	75					ns	
Address Setup Time	t_{AW}	0					ns	
Write Recovery Time	t_{WR}	10					ns	
Output High-Z from $\overline{\text{WE}}$	t_{ODW}			35			ns	
Output Active from $\overline{\text{WE}}$	$t_{ m OEW}$	5					ns	
Data Setup Time	$t_{ m DS}$	40					ns	
Data Hold Time	$t_{ m DH}$	0					ns	

DATA RETENTION CHARACTERISTICS $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

_,,				(• A		\mathbf{c}
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Retention Supply Voltage	V_{DR}	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.5V$	2.0		5.5	V
Data Retention Current at 5.5V	I _{CCR1}	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.5 \text{V}$		0.1*	1	μΑ
Data Retention Current at 2.0V	I _{CCR2}	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.5V$		50*	750	nA
Chip Deselect to Data Retention	t_{CDR}		0			μs
Recovery Time	t_R		2			ms

^{*} Typical values are at +25°C

+3-VOLT OPERATION

RECOMMENDED DC OPERATING CONDITIONS

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V_{CC}	2.7	3.0	3.5	V	
Input High Voltage	$ m V_{IH}$	2.0		$V_{CC} + 0.3$	V	
Input Low Voltage	$V_{ m IL}$	-0.3		0.6	V	
Data Retention Voltage	V_{DR}	2.0		3.5	V	

DC CHARACTERISTICS

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 2.7V \text{ to } 3.5V)$

DO OID A COLLINI		(1A 10 0 t	20 0, V _{CC} 2.1 V to 0.0 V			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	${ m I}_{ m IL}$	$0V \leq V_{IN} \leq V_{CC}$			±0.1	μΑ
I/O Leakage Current	I_{LO}	$\overline{\text{CE}} = V_{\text{IH}}, 0V \le V_{\text{IO}} \le V_{\text{CC}}$			±0.5	μΑ
Output High Current	I _{OH}	$V_{OH} = 2.2V$	-0.5			mA
Output Low Current	I_{OL}	$V_{OL} = 0.4V$	4.0			mA
Standby Current	I _{CCS1}	$\overline{\text{CE}} = 2.0 \text{V}$			0.1	mA
Standby Current	I _{CCS2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3 \text{V}, \text{T}_{\text{A}} = +60^{\circ} \text{C}$			500	nA
Standby Current	I _{CCS2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3 \text{V}, \text{T}_{\text{A}} = +25^{\circ}\text{C}$			50	nA
Operating Current	I_{CCO}	$\overline{\text{CE}} = 0.6\text{V}$ min cycle			25	mA

AC CHARACTERISTICS READ CYCLE

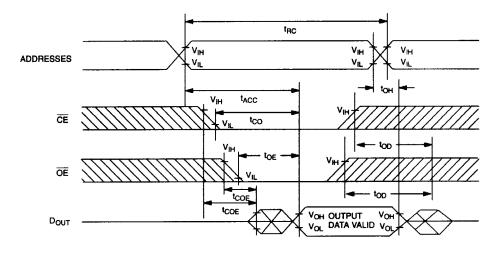
 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 2.7V \text{ to } 3.5V)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Read Cycle Time	t_{RC}	250			ns	
Access Time	t_{ACC}			250	ns	
OE to Output Valid	t_{OE}			120	ns	
CE to Output Valid	t_{CO}			250	ns	
$\overline{\text{CE}}$ or $\overline{\text{OE}}$ to Output Active	$t_{\rm COE}$	15			ns	
Output High-Z from Deselection	t _{OD}	5		100	ns	
Output Hold from Address Change	t _{OH}	15			ns	

AC CHARACTERISTICS WRITE CYCLE

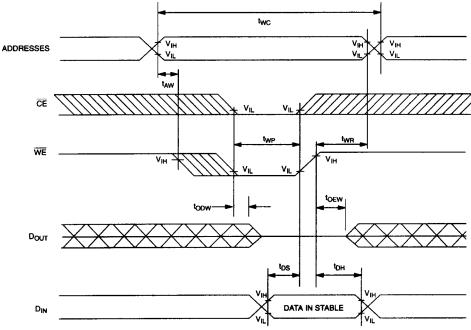
 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 2.7V \text{ to } 3.5V)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Write Cycle Time	$t_{ m WC}$	250			ns	
Write Pulse Width	t_{WP}	190			ns	
Address Setup Time	$t_{ m AW}$	0			ns	
Write Recovery Time	$t_{ m WR}$	25			ns	
Output High-Z from WE	t_{ODW}			90	ns	
Output Active from WE	$t_{ m OEW}$	5			ns	
Data Setup Time	$t_{ m DS}$	100			ns	
Data Hold Time	$t_{ m DH}$	0			ns	

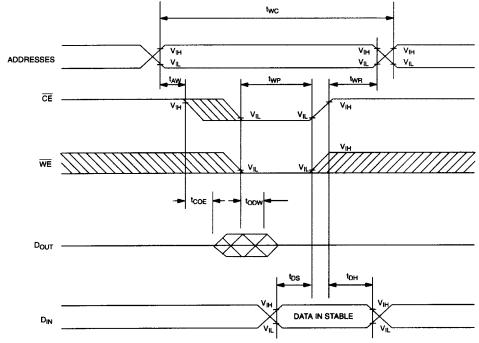

DATA RETENTION CHARACTERISTICS

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

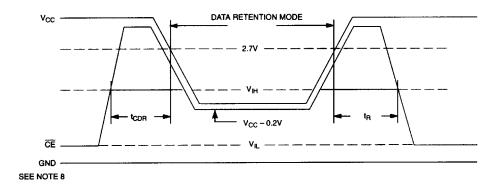
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Retention	V_{DR}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}$	2.0		3.5	V
Supply Voltage	V DR	CE ≥ V _{CC} = 0.3 V	2.0		3.3	V
Data Retention	I _{CCR1}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}$		50*	1000	nA
Current at 3.5V				30.	1000	пA
Data Retention	I _{CCR2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}$		50*	750	nA
Current at 2.0V				30.	730	IIA
Chip Deselect to	4		0			μs
Data Retention	t_{CDR}					
Recovery Time	t_R		2			ms


^{*} Typical values are at +25°C

TIMING DIAGRAM: READ CYCLE


SEE NOTE 1

TIMING DIAGRAM: WRITE CYCLE 1


SEE NOTES 2, 3, 4, 5, 6, AND 7

TIMING DIAGRAM: WRITE CYCLE 2

SEE NOTES 2, 3, 4, 5, 6, AND 7

TIMING DIAGRAM: DATA RETENTION - POWER-UP, POWER-DOWN Figure 1

SEE NOTE 8

NOTES:

- 1) $\overline{\text{WE}}$ is high for read cycles.
- 2) $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3) t_{WP} is specified as the logical AND of \overline{CE} and \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{WE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4) t_{DH} and t_{DS} are measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5) If the $\overline{\text{CE}}$ low transition occurs simultaneously with or later than the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state.
- 6) If the $\overline{\text{CE}}$ high transition occurs prior to or simultaneously with the $\overline{\text{WE}}$ high transition, the output buffers remain in a high impedance state.
- 7) If $\overline{\text{WE}}$ is low or the $\overline{\text{WE}}$ low transition occurs prior to or simultaneously with the $\overline{\text{CE}}$ low transition, the output buffers remain in a high impedance state.
- 8) If the V_{IH} level of CE is 2.0V during the period that V_{CC} voltage is going down from 4.5V to 2.7V, I_{CCS1} current flows.
- 9) The DS2016 maintains full operation from 5.5V to 2.7V. The electrical characteristics tables show two tested and guaranteed points of operation. For operation between 4.5V and 3.5V, use the composite worst case characteristics from both 5V and 3V operation for design purposes.

DC TEST CONDITIONS

Outputs Open

All voltages are referenced to ground.

AC TEST CONDITIONS

Output Load: 100pF + 1TTL Gate Input Pulse Levels: 0V - 3.0V

Timing Measurement Reference Levels

Input: 1.5V Output: 1.5V

Input Pulse Rise and Fall Times: 5ns

PACKAGE INFORMATION

For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.