imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DS2152

www.maxim-ic.com

FEATURES

- Complete DS1/ISDN-PRI Transceiver Functionality
- Line Interface can Handle Both Long- and Short-Haul Trunks
- 32-Bit or 128-Bit Crystal-Less Jitter Attenuator
- Generates DSX-1 and CSU Line Build-Outs
- Frames to D4, ESF, and SLC-96^R Formats
- Dual On-Board Two-Frame Elastic Store Slip Buffers That can Connect to Asynchronous Backplanes Up to 8.192MHz
- 8-Bit Parallel Control Port That can be Used Directly on Either Multiplexed or Nonmultiplexed Buses (Intel or Motorola)
- Extracts and Inserts Robbed-Bit Signaling
- Detects and Generates Yellow (RAI) and Blue (AIS) Alarms
- Programmable Output Clocks for Fractional T1
- Fully Independent Transmit and Receive Functionality
- Integral HDLC Controller with 16-Byte Buffers for the FDL
- Generates and Detects In-Band Loop Codes from 1 to 8 bits in Length Including CSU Loop Codes
- Contains ANSI Ones Density Monitor and Enforcer
- Large Path and Line Error Counters Including BPV, CV, CRC6, and Framing Bit Errors
- Pin Compatible with DS2154 E1 Enhanced Single-Chip Transceiver
- 5V Supply; Low-Power CMOS
- 100-Pin, 14mm² LQFP Package

PIN CONFIGURATION

ORDERING INFORMATION

PART	TEMP	PIN-
FANI	RANGE	PACKAGE
DS2152L	0° C to $+70^{\circ}$ C	100 LQFP
DS2152L+	0° C to $+70^{\circ}$ C	100 LQFP
DS2152LN	-40°C to +85°C	100 LQFP
DS2152LN+	-40°C to +85°C	100 LQFP

+Denotes lead-free/RoHS-compliant package.

TABLE OF CONTENTS

1	DETAILED DESCRIPTION	6
	1.1 INTRODUCTION	6
	1.1.1 New Features	
	1.2 FUNCTIONAL DESCRIPTION	
	1.3 READER'S NOTE	
2	PIN DESCRIPTION	
	2.1 TRANSMIT SIDE DIGITAL PINS	
	2.2 RECEIVE SIDE DIGITAL PINS	
	2.3 PARALLEL CONTROL PORT PINS	
	2.4 LINE INTERFACE PINS	
3		
4	CONTROL, ID, AND TEST REGISTERS	18
	4.1 PAYLOAD LOOPBACK	24
	4.2 FRAMER LOOPBACK	
	4.3 PULSE DENSITY ENFORCER	
	 4.4 LOCAL LOOPBACK	
	 4.5 POWER-UP SEQUENCE 4.6 REMOTE LOOPBACK 	
5	STATUS AND INFORMATION REGISTERS	
6	ERROR COUNT REGISTERS	
	6.1 LINE CODE VIOLATION COUNT REGISTER (LCVCR)	
	6.2 PATH CODE VIOLATION COUNT REGISTER (PCVCR)	
	6.3 MULTIFRAMES OUT OF SYNC COUNT REGISTER (MOSCR)	
7		
8	SIGNALING OPERATION	47
	8.1 PROCESSOR-BASED SIGNALING	47
	8.2 HARDWARE-BASED SIGNALING	
	8.2.1 Receive Side	
	8.2.2 Transmit Side	
9		
	9.1 TRANSMIT SIDE CODE GENERATION	50
	 9.1.1 Simple Idle Code Insertion and Per-Channel Loopback 9.1.2 Per-Channel Code Insertion 	50
	9.2 RECEIVE SIDE CODE GENERATION	
	9.2.1 Simple Code Insertion	
	9.2.2 Per-Channel Code Insertion	52
1(0 CLOCK BLOCKING REGISTERS	54
11	1 ELASTIC STORES OPERATION	55
	11.1 RECEIVE SIDE	
	11.2 TRANSMIT SIDE	
	11.3 MINIMUM DELAY SYNCHRONOUS RSYSCLK/TSYSCLK MODE	
12	2 FDL/FS EXTRACTION AND INSERTION	57
	12.1 HDLC AND BOC CONTROLLER FOR THE FDL	
	12.1.1 Status Register for the FDL	
	12.1.2 Basic Operation Details	

12.1.3 Receive an HDLC Message or a BOC	
12.1.4 Transmit an HDLC Message	
12.1.5 Transmit a BOC	
12.1.6 HDLC/BOC Register Description	
12.2 LEGACY FDL SUPPORT	
12.2.1 Receive Section	
12.2.2 Transmit Section	
12.3 D4/SLC-96 OPERATION	
13 PROGRAMMABLE IN-BAND CODE GENERATION AND DET	ECTION
14 TRANSMIT TRANSPARENCY	
15 LINE INTERFACE FUNCTION	75
15.1 RECEIVE CLOCK AND DATA RECOVERY	
15.2 TRANSMIT WAVESHAPING AND LINE DRIVING	
15.3 JITTER ATTENUATOR	77
16 TIMING DIAGRAMS	80
17 DC CHARACTERISTICS	
18 AC CHARACTERISTICS	
19 PACKAGE INFORMATION	
19.1 100-PIN LQFP (56-G5002-000)	

LIST OF FIGURES

Figure 1-1. DS2152 Enhanced T1 Single-Chip Transceiver	8
Figure 15-1. External Analog Connections	
Figure 15-2. Jitter Tolerance	
Figure 15-3. Transmit Waveform Template	79
Figure 15-4. Jitter Attenuation	79
Figure 16-1. Receive Side D4 Timing	80
Figure 16-2. Receive Side Boundary Timing (with Elastic Store Disabled)	80
Figure 16-3. Receive Side Boundary Timing (with Elastic Store Disabled)	81
Figure 16-4. Receive Side 1.544MHz Boundary Timing (with Elastic Store Enabled)	81
Figure 16-5. Receive Side 2.048MHz Boundary Timing (with Elastic Store Enabled)	82
Figure 16-6. Transmit Side D4 Timing	82
Figure 16-7. Transmit Side Timing	83
Figure 16-8. Transmit Side Boundary Timing	83
Figure 16-9. Transmit Side 1.544MHz Boundary Timing (with Elastic Store Enabled)	84
Figure 16-10. Transmit Side 2.048MHz Boundary Timing (with Elastic Store Enabled)	84
Figure 16-11. Transmit Data Flow	
Figure 18-1. Intel Bus Read AC Timing (BTS = 0/MUX = 1)	87
Figure 18-2. Intel Bus Write AC Timing (BTS = 0/MUX = 1)	88
Figure 18-3. Motorola Bus AC Timing (BTS = 1/MUX = 1)	88
Figure 18-4. Receive Side AC Timing	
Figure 18-5. Receive System Side AC Timing	
Figure 18-6. Receive Line Interface AC Timing	
Figure 18-7. Transmit Side AC Timing	93
Figure 18-8. Transmit System Side AC Timing	
Figure 18-9. Transmit Line Interface Side AC Timing	
Figure 18-10. Intel Bus Read AC Timing (BTS = 0/MUX = 0)	
Figure 18-11. Intel Bus Write AC Timing (BTS=0/MUX=0)	
Figure 18-12. Motorola Bus Read AC Timing (BTS = 1/MUX = 0)	
Figure 18-13. Motorola Bus Write AC Timing (BTS = 1/MUX = 0)	96

LIST OF TABLES

Table 2-1. Register Map	15
Table 4-1. Output Pin Test Modes	
Table 5-1. Receive T1 Level Indication	34
Table 5-2. Alarm Criteria	
Table 6-1. Line Code Violation Counting Arrangements	
Table 6-2. Path Code Violation Counting Arrangements	41
Table 6-3. Multiframes Out of Sync Counting Arrangements	42
Table 12-1. HDLC/BOC Controller Register List	
Table 13-1. Transmit Code Length	71
Table 13-2. Receive Code Length	71
Table 15-1. Line Build-Out Select in LICR	76
Table 15-2. Transformer Specifications	77
Table 17-1. Recommended DC Operating Conditions	
Table 17-2. Capacitance	86
Table 17-3. DC Characteristics	
Table 18-1. AC Characteristics—Multiplexed Parallel Port (MUX = 1)	87
Table 18-2. AC Characteristics—Receive Side	
Table 18-3. AC Characteristics—Transmit Side	92
Table 18-4. AC Characteristics—Nonmultiplexed Parallel Port (MUX = 0)	95

1 DETAILED DESCRIPTION

The DS2152 T1 enhanced single-chip transceiver (SCT) contains all the necessary functions for connection to T1 lines, whether they be DS-1 long haul or DSX-1 short haul. The clock recovery circuitry automatically adjusts to T1 lines from 0 feet to over 6000 feet in length. The device can generate both DSX-1 line build-outs as well as CSU line build-outs of -7.5dB, -15dB, and -22.5dB. The on-board jitter attenuator (selectable to either 32 bits or 128 bits) can be placed in either the transmit or receive data paths. The framer locates the frame and multiframe boundaries and monitors the data stream for alarms. It is also used for extracting and inserting robbed-bit signaling data and FDL data. The device contains a set of internal registers that the user can access and control the operation of the unit. Quick access via the parallel control port allows a single controller to handle many T1 lines. The device fully meets all the latest T1 specifications including ANSI T1.403-1995, ANSI T1.231-1993, AT&T TR 62411 (12-90), AT&T TR54016, and ITU G.703, G.704, G.706, G.823, and I.431.

1.1 Introduction

The DS2152 is a superset version of the popular DS2151 T1 single-chip transceiver offering the new features listed below. All of the original features of the DS2151 have been retained and software created for the original devices is transferable into the DS2152.

1.1.1 New Features

- Option for non-multiplexed bus operation
- Crystal-less jitter attenuation
- Additional hardware signaling capability including:
 - Receive signaling reinsertion to a backplane multiframe sync
 - Availability of signaling in a separate PCM data stream
 - Signaling freezing
 - Interrupt generated on change of signaling data
- Per-channel code insertion in both transmit and receive paths
- Full HDLC controller for the FDL with 16-byte buffers in both transmit and receive paths
- RCL, RLOS, RRA, and RAIS alarms now interrupt on change of state
- 8.192MHz clock synthesizer
- Per-channel loopback
- Addition of hardware pins to indicate carrier loss and signaling freeze
- Line interface function can be completely decoupled from the framer/formatter to allow:
 - Interface to optical, HDSL, and other NRZ interfaces
 - Ability to "tap" the transmit and receive bipolar data streams for monitoring purposes
 Ability to corrupt data and insert framing errors, CRC errors, etc.
- Transmit and receive elastic stores now have independent backplane clocks
- Ability to monitor one DS0 channel in both the transmit and receive paths
- Access to the data streams in between the framer/formatter and the elastic stores
- AIS generation in the line interface that is independent of loopbacks
- Ability to calculate and check CRC6 according to the Japanese standard
- Ability to pass the F-bit position through the elastic stores in the 2.048MHz backplane mode
- Programmable in-band loop code generator and detector

1.2 Functional Description

The analog AMI/B8ZS waveform off the T1 line is transformer-coupled into the RRING and RTIP pins of the DS2152. The device recovers clock and data from the analog signal and passes it through the jitter attenuation mux to the receive side framer where the digital serial stream is analyzed to locate the framing/multi-frame pattern. The DS2152 contains an active filter that reconstructs the analog received signal for the non-linear losses that occur in transmission. The device has a usable receive sensitivity of 0dB to -36dB, which allows the device to operate on cables up to 6000 feet in length. The receive side framer locates D4 (SLC-96) or ESF multiframe boundaries as well as detects incoming alarms, including carrier loss, loss of synchronization, blue (AIS) and yellow alarms. If needed, the receive side elastic store can be enabled in order to absorb the phase and frequency differences between the recovered T1 data stream and an asynchronous backplane clock which is provided at the RSYSCLK input. The clock applied at the RSYSCLK input can be either a 2.048MHz clock or a 1.544MHz clock. The RSYSCLK can be a bursty clock with speeds up to 8.192MHz.

The transmit side of the DS2152 is totally independent from the receive side in both the clock requirements and characteristics. Data off of a backplane can be passed through a transmit side elastic store if necessary. The transmit formatter will provide the necessary frame/multiframe data overhead for T1 transmission. Once the data stream has been prepared for transmission, it is sent via the jitter attenuation mux to the waveshaping and line driver functions. The DS2152 will drive the T1 line from the TTIP and TRING pins via a coupling transformer. The line driver can handle both long (CSU) and short haul (DSX-1) lines.

1.3 Reader's Note

This data sheet assumes a particular nomenclature of the T1 operating environment. In each 125µs frame, there are 24 8-bit channels plus a framing bit. It is assumed that the framing bit is sent first followed by channel 1. Each channel is made up of 8 bits that are numbered 1 to 8. Bit number 1 is the MSB and is transmitted first. Bit number 8 is the LSB and is transmitted last. Throughout this data sheet, the following abbreviations are used:

D4	Superframe (12 frames per multiframe) Multiframe Structure
SLC-96	Subscriber Loop Carrier - 96 Channels (SLC-96 is an AT&T registered trademark)
ESF	Extended Superframe (24 frames per multiframe) Multiframe Structure
B8ZS	Bipolar with 8 0 Substitution
CRC	Cyclical Redundancy Check
Ft	Terminal Framing Pattern in D4
Fs	Signaling Framing Pattern in D4
FPS	Framing Pattern in ESF
MF	Multiframe
BOC	Bit Oriented Code
HDLC	High Level Data Link Control
FDL	Facility Data Link

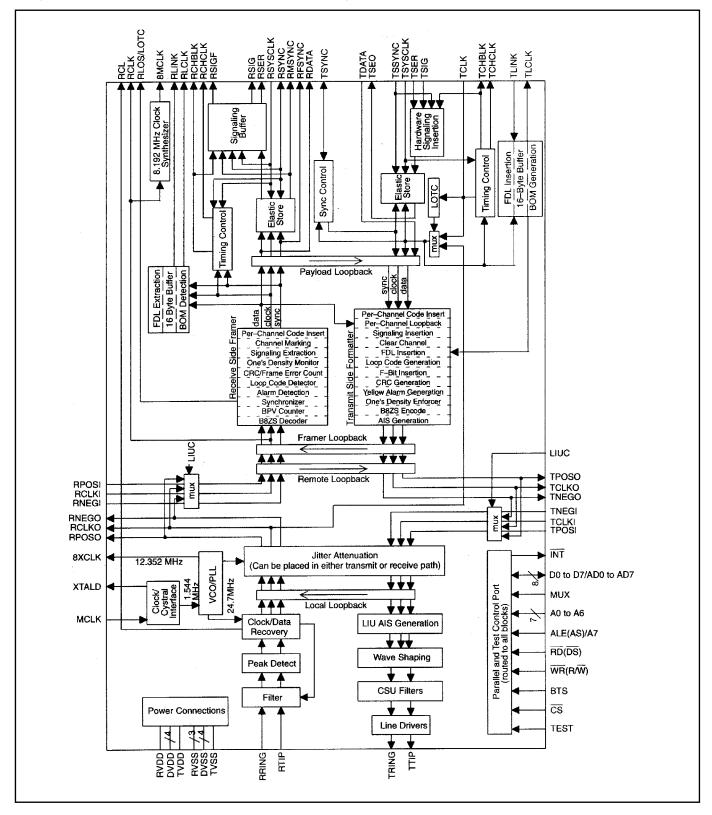


Figure 1-1. DS2152 Enhanced T1 Single-Chip Transceiver

2 PIN DESCRIPTION

PIN	NAME	TYPE	FUNCTION
1	RCHBLK	0	Receive Channel Block
2, 4, 5, 7–10, 15, 23, 26, 27, 28, 36, 54, 76	N.C.	_	No Connection. These pins should be left open circuited.
3	8MCLK	0	8.192MHz Clock
6	RCL	0	Receive Carrier Loss
11	BTS	Ι	Bus Type Select
12	LIUC	Ι	Line Interface Connect
13	8XCLK	0	Eight Times Clock
14	TEST	Ι	Test
16	RTIP	Ι	Receive Analog Tip Input
17	RRING	Ι	Receive Analog Ring Input
18	RVDD		Receive Analog Positive Supply
19, 20, 24	RVSS		Receive Analog Signal Ground
21	MCLK	Ι	Master Clock Input
22	X <u>TAL</u> D	0	Quartz Crystal Driver
25	INT	0	Active-Low Interrupt
29	TTIP	0	Transmit Analog Tip Output
30	TVSS		Transmit Analog Signal Ground
31	TVDD		Transmit Analog Positive Supply
32	TRING	0	Transmit Analog Ring Output
33	TCHBLK	0	Transmit Channel Block
34	TLCLK	0	Transmit Link Clock
<u>35</u> 37	TLINK	I I/O	Transmit Link Data
37	TSYNC	I/O	Transmit Sync
38	TPOSI TNEGI	I I	Transmit Positive Data Input Transmit Negative Data Input
40	TCLKI	I	Transmit Negative Data Input
40	TCLKO	0	Transmit Clock Output
41	TNEGO	0	Transmit Vegative Data Output
43	TPOSO	0	Transmit Positive Data Output
44, 61, 81, 83	DVDD	_	Digital Positive Supply
45, 60, 80, 84	DVSS		Digital Signal Ground
46	TCLK	Ι	Transmit Clock
47	TSER	Ι	Transmit Serial Data
48	TSIG	Ι	Transmit Signaling Input
49	TESO	0	Transmit Elastic Store Output
50	TDATA	I	Transmit Data
51	TSYSCLK	I	Transmit System Clock
52	TSSYNC	I	Transmit System Sync
53	TCHCLK	0	Transmit Channel Clock
55	MUX	I	Bus Operation
56	D0/AD0	I/O	Data Bus Bit 0/Address/Data Bus Bit 0

PIN	NAME	TYPE	FUNCTION
57	D1/AD1	I/O	Data Bus Bit 1/Address/Data Bus Bit 1
58	D2/AD2	I/O	Data Bus Bit 2/Address/Data Bus Bit 2
59	D3/AD3	I/O	Data Bus Bit 3/Address/Data Bus Bit 3
62	D4/AD4	I/O	Data Bus Bit 4/Address/Data Bus Bit 4
63	D5/AD5	I/O	Data Bus Bit 5/Address/Data Bus Bit 5
64	D6/AD6	I/O	Data Bus Bit 6/Address/Data Bus Bit 6
65	D7/AD7	I/O	Data Bus Bit 7/Address/Data Bus Bit 7
66–72	A0–A6	Ι	Address Bus Bit 0
73	A7/ALE	Ι	Address Bus Bit 7/Address Latch Enable
74	$\overline{\text{RD}}(\overline{\text{DS}})$	Ι	Active-Low Read Input (Data Strobe)
75	\overline{CS}	Ι	Active-Low Chip Select
77	$\overline{WR}(R/\overline{W})$	Ι	Active-Low Write Input (Read/Write)
78	RLINK	0	Receive Link Data
79	RLKCLK	0	Receive Link Clock
82	RCLK	0	Receive Clock
85	RDATA	0	Receive Data
86	RPOSI	Ι	Receive Positive Data Input
87	RNEGI	Ι	Receive Negative Data Input
88	RCLKI	Ι	Receive Clock Input
89	RCLKO	0	Receive Clock Output
90	RNEGO	0	Receive Negative Data Output
91	RPOSO	0	Receive Positive Data Output
92	RCHCLK	0	Receive Channel Clock
93	RSIGF	0	Receive Signaling Freeze Output
94	RSIG	0	Receive Signaling Output
95	RSER	0	Receive Serial Data
96	RMSYNC	0	Receive Multiframe Sync
97	RFSYNC	0	Receive Frame Sync
98	RSYNC	I/O	Receive Sync
99	RLOS/LOTC	0	Receive Loss of Sync/Loss of Transmit Clock
100	RSYSCLK	Ι	Receive System Clock

2.1 Transmit Side Digital Pins

PIN	NAME	FUNCTION
46	TCLK	Transmit Clock. A 1.544MHz primary clock. Used to clock data through the transmit side formatter.
47	TSER	Transmit Serial Data. Transmit NRZ serial data. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.
53	TCHCLK	Transmit Channel Clock. A 192kHz clock that pulses high during the LSB of each channel. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for parallel to serial conversion of channel data.
33	TCHBLK	Transmit Channel Block. A user-programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used such as Fractional T1, 384kbps (H0), 768kbps, or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications, for external per-channel loopback, and for per-channel conditioning. See Section <u>10</u> for details.
51	TSYSCLK	Transmit System Clock. 1.544MHz or 2.048MHz clock. Only used when the transmit side elastic store function is enabled. Should be tied low in applications that do not use the transmit side elastic store. Can be burst at rates up to 8.192MHz.
34	TLCLK	Transmit Link Clock. 4 kHz or 2kHz (ZBTSI) demand clock for the TLINK input. See Section <u>12</u> for details. Transmit Link Data [TLINK].
35	TLINK	Transmit Link Data. If enabled via TCR1.2, this pin will be sampled on the falling edge of TCLK for data insertion into either the FDL stream (ESF) or the Fs-bit position (D4) or the Z-bit position (ZBTSI). See Section <u>12</u> for details.
37	TSYNC	Transmit Sync. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Via TCR2.2, the DS2152 can be programmed to output either a frame or multiframe pulse at this pin. If this pin is set to output pulses at frame boundaries, it can also be set via TCR2.4 to output double-wide pulses at signaling frames. See Section <u>16</u> for details.
52	TSSYNC	Transmit System Sync. Only used when the transmit side elastic store is enabled. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Should be tied low in applications that do not use the transmit side elastic store.
48	TSIG	Transmit Signaling Input. When enabled, this input will sample signaling bits for insertion into outgoing PCM T1 data stream. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.
49	TESO	Transmit Elastic Store Data Output. Updated on the rising edge of TCLK with data out of the transmit side elastic store whether the elastic store is enabled or not. This pin is normally tied to TDATA.
50	TDATA	Transmit Data. Sampled on the falling edge of TCLK with data to be clocked through the transmit side formatter. This pin is normally tied to TESO.
43	TPOSO	Transmit Positive Data Output. Updated on the rising edge of TCLKO with the bipolar data out of the transmit side formatter. Can be programmed to source NRZ data via the Output Data Format (CCR1.6) control bit. This pin is normally tied to TPOSI.
42	TNEGO	Transmit Negative Data Output. Updated on the rising edge of TCLKO with the bipolar data out of the transmit side formatter. This pin is normally tied to TNEGI.
41	TCLKO	Transmit Clock Output. Buffered clock that is used to clock data through the transmit side formatter (i.e., either TCLK or RCLKI). This pin is normally tied to TCLKI.
38	TPOSI	Transmit Positive Data Input. Sampled on the falling edge of TCLKI for data to be

PIN	NAME	FUNCTION		
		transmitted out onto the T1 line. Can be internally connected to TPOSO by tying the		
		LIUC pin high. TPOSI and TNEGI can be tied together in NRZ applications.		
39	TNEGI	Transmit Negative Data Input. Sampled on the falling edge of TCLKI for data to be transmitted out onto the T1 line. Can be internally connected to TNEGO by tying the LIUC pin high. TPOSI and TNEGI can be tied together in NRZ applications.		
40	TCLKI	Transmit Clock Input. Line interface transmit clock. Can be internally connected to TCLKO by tying the LIUC pin high.		

2.2 Receive Side Digital Pins

PIN	NAME	FUNCTION
78	RLINK	Receive Link Data. Updated with either FDL data (ESF) or Fs bits (D4) or Z bits
		(ZBTSI) one RCLK before the start of a frame. See Section <u>16</u> for details.
79	RLCLK	Receive Link Clock. A 4kHz or 2 kHz (ZBTSI) clock for the RLINK output.
82	RCLK	Receive Clock. 1.544MHz clock that is used to clock data through the receive side framer.
92	RCHCLK	Receive Channel Clock. A 192kHz clock that pulses high during the LSB of each channel. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for parallel to serial conversion of channel data.
1	RCHBLK	Receive Channel Block. A user-programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used, such as Fractional T1, 384kbps service, 768kbps, or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications, for external per-channel loopback, and for per-channel conditioning. See Section <u>10</u> for details.
95	RSER	Receive Serial Data. Received NRZ serial data. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled.
98	RSYNC	Receive Sync. An extracted pulse, one RCLK wide, is output at this pin, which identifies either frame (RCR2.4 = 0) or multiframe (RCR2.4 = 1) boundaries. If set to output frame boundaries then via RCR2.5, RSYNC can also be set to output double-wide pulses on signaling frames. If the receive side elastic store is enabled via CCR1.2, then this pin can be enabled to be an input via RCR2.3 at which a frame or multiframe boundary pulse is applied. See Section <u>16</u> for details.
97	RFSYNC	Receive Frame Sync. An extracted 8kHz pulse 1 RCLK wide is output at this pin that identifies frame boundaries.
96	RMSYNC	Receive Multiframe Sync. Only used when the receive side elastic store is enabled. An extracted pulse, 1 RSYSCLK wide, is output at this pin, which identifies multiframe boundaries. If the receive side elastic store is disabled, then this output will output multiframe boundaries associated with RCLK.
85	RDATA	Receive Data. Updated on the rising edge of RCLK with the data out of the receive side framer.
100	RSYSCLK	Receive System Clock. 1.544MHz or 2.048MHz clock. Only used when the elastic store function is enabled. Should be tied low in applications that do not use the elastic store. Can be burst at rates up to 8.192MHz.
94	RSIG	Receive Signaling Output. Outputs signaling bits in a PCM format. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled.

PIN	NAME	FUNCTION
99	RLOS/LOTC	Receive Loss of Sync/Loss of Transmit Clock. A dual function output that is controlled by the CCR3.5 control bit. This pin can be programmed to either toggle high when the synchronizer is searching for the frame and multiframe or to toggle high if the TCLK pin has not been toggled for 5µs.
6	RCL	Receive Carrier Loss. Set high when the line interface detects a loss of carrier.
93	RSIGF	Receive Signaling Freeze. Set high when the signaling data is frozen via either automatic or manual intervention. Used to alert downstream equipment of the condition.
3	8MCLK	8MHz Clock. A 8.192MHz output clock that is referenced to the clock that is output at the RCLK pin and is used to clock data through the receive side framer.
91	RPOSO	Receive Positive Data Output. Updated on the rising edge of RCLKO with the bipolar data out of the line interface. This pin is normally tied to RPOSI.
90	RNEGO	Receive Negative Data Output. Updated on the rising edge of RCLKO with the bipolar data out of the line interface. This pin is normally tied to RNEGI.
89	RCLKO	Receive Clock Output. Buffered recovered clock from the T1 line. This pin is normally tied to RCLKI.
86	RPOSI	Receive Positive Data Input. Sampled on the falling edge of RCLKI for data to be clocked through the receive side framer. RPOSI and RNEGI can be tied together for a NRZ interface. Can be internally connected to RPOSO by tying the LIUC pin high.
87	RNEGI	Receive Negative Data Input. Sampled on the falling edge of RCLKI for data to be clocked through the receive side framer. RPOSI and RNEGI can be tied together for a NRZ interface. Can be internally connected to RNEGO by tying the LIUC pin high.
88	RCLKI	Receive Clock Input. Clock used to clock data through the receive side framer. This pin is normally tied to RCLKO. Can be internally connected to RCLKO by tying the LIUC pin high.

2.3 Parallel Control Port Pins

PIN	NAME	FUNCTION			
25	ĪNT	Interrupt. Flags host controller during conditions and change of conditions defined in the Status Registers 1 and 2 and the FDL Status Register. Active-low, open-drain output.			
14	TEST	Tri-State Control. Set high to tri-state all output and I/O pins (including the parallel control port). Set low for normal operation. Useful in board-level testing.			
55	MUX	Bus Operation. Set low to select nonmultiplexed bus operation. Set high to select multiplexed bus operation.			
56–65	D0–D7/ AD0–AD7	Data Bus or Address/Data Bus. In nonmultiplexed bus operation (MUX = 0), serves as the data bus. In multiplexed bus operation (MUX = 1), serves as an 8-bit multiplexed ddress/data bus.			
66–72	A0–A6	Address Bus. In nonmultiplexed bus operation ($MUX = 0$), serves as the address bus. In multiplexed bus operation ($MUX = 1$), these pins are not used and should be tied low.			
11	BTS	Bus Type Select. Strap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls the function of the $\overline{RD}(\overline{DS})$, ALE(AS), and $\overline{WR}(R/\overline{W})$ pins. If BTS = 1, then these pins assume the function listed in parentheses.			
74	$\overline{RD}(\overline{DS})$	Read Input (Data Strobe). $\overline{\text{RD}}$ and $\overline{\text{DS}}$ are active-low signals when MUX = 1. DS is active high when MUX = 0. See bus timing diagrams.			
75	\overline{CS}	Chip Select. Must be low to read or write to the device. \overline{CS} is an active-low signal.			
73	ALE(AS)	A7 or Address Latch Enable (Address Strobe). In non-multiplexed bus operation $(MUX = 0)$, serves as the upper address bit. In multiplexed bus operation $(MUX = 1)$, serves to demultiplex the bus on a positive-going edge.			
77	$\overline{\mathrm{WR}}(\mathrm{R}/\overline{\mathrm{W}})$	Write Input (Read/Write). WR is an active-low signal.			

2.4 Line Interface Pins

PIN	NAME	FUNCTION			
21	MCLK	Master Clock Input. A 1.544MHz (±50ppm) clock source with TTL levels is applied at this pin. This clock is used internally for both clock/data recovery and for jitter attenuation. A quartz crystal of 1.544MHz may be applied across MCLK and XTALD instead of the TTL level clock source.			
22	XTALD	Quartz Crystal Driver. A quartz crystal of 1.544MHz may be applied across MCLK and XTALD instead of a TTL level clock source at MCLK. Leave open circuited if a TTL clock source is applied at MCLK.			
13	8XCLK	ght Times Clock . A 12.352MHz clock that is frequency locked to the 1.544MHz ock provided from the clock/data recovery block (if the jitter attenuator is enabled on e receive side) or from the TCLKI pin (if the jitter attenuator is enabled on the transmit de). Can be internally disabled via the TEST2 register if not needed.			
12	LIUC	Line Interface Connect. Tie low to separate the line interface circuitry from the framer/formatter circuitry and activate the TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/ RCLKI pins. Tie high to connect the line interface circuitry to the framer/formatter circuitry and deactivate the TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins. When LIUC is tied high, the TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins should be tied low.			
16, 17	RTIP, RRING	Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect via a 1:1 transformer to the T1 line. See Section <u>15</u> for details.			
29, 32	TTIP, TRING	Transmit Tip and Ring. Analog line driver outputs. These pins connect via a 1:1.15 or 1:1.36 step-up transformer to the T1 line. See Section <u>15</u> for details.			

2.5 Supply Pins

PIN	NAME	FUNCTION
44, 61, 81, 83	DVDD	Digital Positive Supply. $5.0V \pm 5\%$. Should be tied to the RVDD and TVDD pins.
18	RVDD	Receive Analog Positive Supply. $5.0V \pm 5\%$. Should be tied to the DVDD and TVDD pins.
31	TVDD	Transmit Analog Positive Supply. $5.0V \pm 5\%$. Should be tied to the RVDD and DVDD pins.
45, 60, 80, 84	DVSS	Digital Signal Ground. Should be tied to the RVSS and TVSS pins.
19, 20, 24	RVSS	Receive Analog Signal Ground. 0V. Should be tied to the DVSS and TVSS pins.
30	TVSS	Transmit Analog Ground. 0V. Should be tied to the RVSS and DVSS pins.

Table 2-1. Register Map

		REGISTER	ł
ADDRESS	R/W	DESCRIPTION	NAME
00	R/W	FDL Control	FDLC
01	R/W	FDL Status	FDLS
02	R/W	FDL Interrupt Mask	FIMR
03	R/W	Receive Performance Report Message	RPRM
04	R/W	Receive Bit Oriented Code	RBOC
05	R	Receive FDL FIFO	RFFR
06	R/W	Transmit Performance Report Message	TPRM
07	R/W	Transmit Bit Oriented Code	TBOC
08	W	Transmit FDL FIFO	TFFR
09	R/W	Test 2	TEST2 (set to 00h)
0A	R/W	Common Control 7	CCR7
0B-0E		Not present	
0F	R	Deceive ID	IDR
10	R/W	Receive Information 3	RIR3
11	R/W	Common Control 4	CCR4
12	R/W	In-Band Code Control	IBCC
13	R/W	Transmit Code Definition	TCD
14	R/W	Receive Up Code Definition	RUPCD
15	R/W	Receive Down Code Definition	RDNCD
16	R/W	Transmit Channel Control 1	TCC1
17	R/W	Transmit Channel Control 2	TCC2
18	R/W	Transmit Channel Control 3	TCC3
19	R/W	Common Control 5	CCR5
1A	R	Transmit DS0 Monitor	TDS0M
1B	R/W	Receive Channel Control 1	RCC1
1C	R/W	Receive Channel Control 2	RCC2
1D	R/W	Receive Channel Control 3	RCC3
1E	R/W	Common Control 6	CCR6
1F	R	Receive DS0 Monitor	RDS0M
20	R/W	Status 1	SR1
21	R/W	Status 2	SR2
22	R/W	Receive Information 1	RIR1
23	R	Line Code Violation Count 1	LCVCR1
24	R	Line Code Violation Count 2	LCVCR2
25	R	Path Code Violation Count 1	PCVCR1
26	R	Path Code Violation Count 2	PCVCR2
27	R	Multiframe Out of Sync Count 2	MOSCR2
28	R	Receive FDL Register	RFDL
29	R/W	Receive FDL Match 1	RMTCH1
2A	R/W	Receive FDL Match 2	RMTCH2
2B	R/W	Receive Control 1	RCR1
2C	R/W	Receive Control 2	RCR2
2D	R/W	Receive Mark 1	RMR1
2E	R/W	Receive Mark 2	RMR2
2F	R/W	Receive Mark 3	RMR3
30	R/W	Common Control 3	CCR3
31	R/W	Receive Information 2	RIR2
32	R/W	Transmit Channel Blocking 1	TCBR1

		REGISTER					
ADDRESS	R/W	DESCRIPTION	NAME				
33	R/W	Transmit Channel Blocking 2	TCBR2				
34	R/W	Transmit Channel Blocking 3	TCBR3				
35	R/W	Transmit Control 1	TCR1				
36	R/W	Transmit Control 2	TCR2				
37	R/W	Common Control 1	CCR1				
38	R/W	Common Control 2	CCR2				
39	R/W	Transmit Transparency 1	TTR1				
3A	R/W	Transmit Transparency 2	TTR2				
3B	R/W	Transmit Transparency 3	TTR3				
3C	R/W	Transmit Idle 1	TIR1				
3D	R/W	Transmit Idle 2	TIR2				
3E	R/W	Transmit Idle 3	TIR3				
3F	R/W	Transmit Idle Definition	TIDR				
40	R/W	Transmit Channel 9	TC9				
41	R/W	Transmit Channel 10	TC10				
42	R/W	Transmit Channel 11	TC11				
43	R/W	Transmit Channel 12	TC12				
44	R/W	Transmit Channel 13	TC13				
45	R/W	Transmit Channel 14	TC14				
46	R/W	Transmit Channel 15	TC15				
47	R/W	Transmit Channel 16	TC16				
48	R/W	Transmit Channel 17	TC17				
49	R/W	Transmit Channel 18	TC18				
4A	R/W	Transmit Channel 19	TC19				
4B	R/W	Transmit Channel 20	TC20				
4C	R/W	Transmit Channel 21	TC21				
4D	R/W	Transmit Channel 22	TC22				
4E	R/W	Transmit Channel 23	TC23				
4F	R/W	Transmit Channel 24	TC24				
50	R/W	Transmit Channel 1	TC1				
51	R/W	Transmit Channel 2	TC2				
52	R/W	Transmit Channel 3	TC3				
53	R/W	Transmit Channel 4	TC4				
54	R/W	Transmit Channel 5	TC5				
55	R/W	Transmit Channel 6	TC6				
56	R/W	Transmit Channel 7	TC7				
57	R/W	Transmit Channel 8	TC8				
58	R/W	Receive Channel 1	RC17				
59	R/W	Receive Channel 18	RC18				
5A	R/W	Receive Channel 19	RC19				
5B	R/W	Receive Channel 20	RC20				
<u>5C</u>	R/W	Receive Channel 21	RC21				
5D	R/W	Receive Channel 22	RC22				
5E	R/W	Receive Channel 23	RC23				
5F	R/W	Receive Channel 24	RC24				
60	R	Receive Signaling 1	RS1				
61	R	Receive Signaling 2	RS2				
<u>62</u> 63	R	Receive Signaling 3	RS3				
	R	Receive Signaling 4	RS4				
<u>64</u> 65	R	Receive Signaling 5	RS5				
03	R	Receive Signaling 6	RS6				

	DAN	REGISTER					
ADDRESS	R/W	DESCRIPTION	NAME				
66	R	Receive Signaling 7	RS7				
67	R	Receive Signaling 8	RS8				
68	R	Receive Signaling 9	RS9				
69	R	Receive Signaling 10	RS10				
6A	R	Receive Signaling 11	RS11				
6B	R	Receive Signaling 12	RS12				
6C	R/W	Receive Channel Blocking 1	RCBR1				
6D	R/W	Receive Channel Blocking 2	RCBR2				
6E	R/W	Receive Channel Blocking 3	RCBR3				
6F	R/W	Interrupt Mask 2	IMR2				
70	R/W	Transmit Signaling 1	TS1				
71	R/W	Transmit Signaling 2	TS2				
72	R/W	Transmit Signaling 3	TS3				
73	R/W	Transmit Signaling 4	TS4				
74	R/W	Transmit Signaling 5	TS5				
75	R/W	Transmit Signaling 6	TS6				
76	R/W	Transmit Signaling 7	TS7				
77	R/W	Transmit Signaling 8	TS8				
78	R/W	Transmit Signaling 9	TS9				
79	R/W	Transmit Signaling 10	TS10				
7A	R/W	Transmit Signaling 11	TS11				
7B	R/W	Transmit Signaling 12	TS12				
7C	R/W	Line Interface Control	LICR				
7D	R/W	Test 1	TEST1 (set to 00h)				
7E	R/W	Transmit FDL Register	TFDL				
7F	R/W	Interrupt Mask Register 1	IMR1				
80	R/W	Receive Channel 1	RC1				
81	R/W	Receive Channel 2	RC2				
82	R/W	Receive Channel 3	RC3				
83	R/W	Receive Channel 4	RC4				
84	R/W	Receive Channel 5	RC5				
85	R/W	Receive Channel 6	RC6				
86	R/W	Receive Channel 7	RC7				
87	R/W	Receive Channel 8	RC8				
88	R/W	Receive Channel 9	RC9				
89	R/W	Receive Channel 10	RC10				
8A	R/W	Receive Channel 11	RC11				
8B	R/W	Receive Channel 12	RC12				
8C	R/W	Receive Channel 13	RC13				
8D	R/W	Receive Channel 14	RC14				
8E	R/W	Receive Channel 15	RC15				
8F	R/W	Receive Channel 16	RC16				

Note 1: Test Registers 1 and 2 are used only by the factory; these registers must be cleared (set to all 0s) on power-up initialization to ensure proper operation. Note 2: Register banks 9xh, Axh, Bxh, Cxh, Dxh, Exh, and Fxh are not accessible.

3 PARALLEL PORT

The DS2152 is controlled via either a nonmultiplexed (MUX = 0) or a multiplexed (MUX = 1) bus by an external microcontroller or microprocessor. The DS2152 can operate with either Intel or Motorola bus timing configurations. If the BTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parentheses. See the timing diagrams in the AC Electrical Characteristics in Section <u>18</u> for more details.

4 CONTROL, ID, AND TEST REGISTERS

The operation of the DS2152 is configured via a set of 11 control registers. Typically, the control registers are only accessed when the system is first powered up. Once the DS2152 has been initialized, the control registers will only need to be accessed when there is a change in the system configuration. There are two Receive Control Register (RCR1 and RCR2), two Transmit Control Registers (TCR1 and TCR2), and seven Common Control Registers (CCR1 to CCR7). Each of the 11 registers is described in this section.

There is a device Identification Register (IDR) at address 0Fh. The MSB of this read-only register is fixed to a 0 indicating that the DS2152 is present. The E1 pin-for-pin compatible version of the DS2152 is the DS2154, which also has an ID register at address 0Fh. The user can read the MSB to determine which chip is present since in the DS2152 the MSB will be set to 0 and in the DS2154 it will be set to 1. The lower 4 bits of the IDR are used to display the die revision of the chip.

				• • •		- /	
(MSB)							(LSB)
T1E1	0	0	0	ID3	ID2	ID1	ID0
SYMI	BOL P	OSITION	NAME ANI	DESCRIP	ΓΙΟΝ		
T1H	E1	IDR.7	T1 or E1 Ch 0 = T1 chip 1 = E1 chip	iip Determin	ation Bit.		
ID	3	IDR.3	Chip Revision		B of a decim	al code that re	epresents the
ID	2	IDR.1	Chip Revision	on Bit 2.			
ID	1	IDR.2	Chip Revision	on Bit 1.			
ID	0	IDR.0	Chip Revision		B of a decima	al code that re	epresents the

IDR: DEVICE IDENTIFICATION REGISTER (Address = 0F Hex)

The two Test Registers at addresses 09 and 7D hex are used by the factory in testing the DS2152. On power-up, the Test Registers should be set to 00 hex for the DS2152 to operate properly.

(MSB)		(LSB)
LCVCRF	ARC OOF1	OOF2 SYNCC SYNCT SYNCE RESYNC
SYMBOL	POSITION	NAME AND DESCRIPTION
LCVCRF	RCR1.7	Line Code Violation Count Register Function Select. 0 = do not count excessive 0s 1 = count excessive 0s
ARC	RCR1.6	Auto Resync Criteria. 0 = Resync on OOF or RCL event 1 = Resync on OOF only
OOF1	RCR1.5	Out Of Frame Select 1. 0 = 2/4 frame bits in error 1 = 2/5 frame bits in error
OOF2	RCR1.4	Out Of Frame Select 2. 0 = follow RCR1.5 1 = 2/6 frame bits in error
SYNCC	RCR1.3	Sync Criteria. In D4 Framing Mode 0 = search for Ft pattern, then search for Fs pattern 1 = cross couple Ft and Fs pattern In ESF Framing Mode 0 = search for FPS pattern only 1 = search for FPS and verify with CRC6
SYNCT	RCR1.2	Sync Time. 0 = qualify 10 bits 1 = qualify 24 bits
SYNCE	RCR1.1	Sync Enable. 0 = auto resync enabled 1 = auto resync disabled
RESYNC	RCR1.0	Resync. When toggled from low to high, a resynchronization of the receive side framer is initiated. Must be cleared and set again for a subsequent resync.

(MSB)			(LSB)				
RCS	RZBTSI	RSDW	RSM	RSIO	RD4YM	FSBE	MOSCRF
SYMBO	L POS	SITION	NAME ANI	D DESCRIP	ΓΙΟΝ		
RCS	RO	CR2.7	0 = idle code	e (7F Hex)	e Section <u>9</u> for (1E/0B/0B/11		
RZBTSI		CR2.6	Receive Sid 0 = ZBTSI d 1 = ZBTSI e		ıble.		
RSDW		CR2.5	RCR2.4 = 1 $0 = do not provide the second second$	or when RCF ulse double-w	Note: This b 2.3 = 1.) vide in signali in signaling f	ng frames	et to 0 when
RSM RCR2.4		CR2.4	as an input.) 0 = frame m	ode (see the t	A don't care i iming diagran the timing di	ns in Section	<u>16</u>)
RSIO RCR2.3		CR2.3	RSYNC I/O Select. (Note: This bit must be CCR1.2 = 0.) 0 = RSYNC is an output 1 = RSYNC is an input (only valid if elastic store				
RD4YM RCR2.2		CR2.2	0 = 0s in bit	2 of all chann	Alarm Select nels on of frame 12		
FSBE RCR2.1		CR2.1	0 = do not re	port bit error	eport Enable s in Fs-bit pos bit position a	sition; only F	
MOSCRI	F RO	CR2.0	0 = count err	ors in the fra	Count Regis ming bit posit nultiframes ou	tion	ı Select.

RCR2: RECEIVE CONTROL REGISTER 2 (Address = 2C Hex)

(MSB) (LSB) LOTCMC TFPT TCPT TSSE GB7S **TFDLS** TBL TYEL **SYMBOL** POSITION NAME AND DESCRIPTION LOTCMC **TCR1.7** Loss Of Transmit Clock Mux Control. Determines whether the transmit side formatter should switch to the ever present RCLKO if the TCLK input should fail to transition (see Figure 1-1 for details). 0 =do not switch to RCLKO if TCLK stops 1 = switch to RCLKO if TCLK stops TFPT **TCR1.6** Transmit F-Bit Pass Through. (See note below.) 0 = F bits sourced internally 1 = F bits sampled at TSER TCPT **TCR1.5** Transmit CRC Pass Through. (See note below.) 0 = source CRC6 bits internally 1 = CRC6 bits sampled at TSER during F-bit time TSSE **TCR1.4** Software Signaling Insertion Enable. (See note below.) 0 =no signaling is inserted in any channel from the TS1–TS12 registers 1 = signaling is inserted in all channels from the TS1-TS12 registers (the TTR registers can be used to block insertion on a channel-by-channel basis) GB7S **TCR1.3** Global Bit 7 Stuffing. (See note below.) 0 = allow the TTR registers to determine which channels containing all 0s are to be Bit 7 stuffed 1 = force Bit 7 stuffing in all 0-byte channels regardless of how the TTR registers are programmed **TFDLS TCR1.2** TFDL Register Select. (See note below.) 0 = source FDL or Fs bits from the internal TFDL register (legacy FDL support mode) 1 = source FDL or Fs bits from the internal HDLC/BOC controller or the TLINK pin TBL **TCR1.1** Transmit Blue Alarm. (See note below.) 0 = transmit data normally 1 = transmit an unframed all 1s code at TPOSO and TNEGO Transmit Yellow Alarm. (See note below.) **TYEL TCR1.0** 0 =do not transmit yellow alarm 1 = transmit yellow alarm

TCR1: TRANSMIT CONTROL REGISTER 1 (Address = 35 Hex)

Note: For a description of how the bits in TCR1 affect the transmit side formatter, see Figure 16-11.

(MSB)				1	1		(LSB)
TEST1	TEST0	TZBTSI	TSDW	TSM	TSIO	TD4YM	TB7ZS
SYMBOL POSITION		NAME AN	NAME AND DESCRIPTION				
TEST1	Т	CR2.7	Test Mode	Bit 1 for Out	put Pins. See	e <u>Table 4-1</u> .	
TEST0	Т	CR2.6	Test Mode	Bit 0 for Out	put Pins. See	e <u>Table 4-1</u> .	
TZBTSI	Т	CR2.5	Transmit S 0 = ZBTSI c 1 = ZBTSI e		nable.		
TSDW	Т	°CR2.4	TCR2.3 = 1 $0 = do not p$	ouble-Wide. or when TCR ulse double-w double-wide	2.2 = 0.) vide in signal	•	t to 0 whe
TSM TCR2.3		CR2.3	 TSYNC Mode Select. 0 = frame mode (see the timing diagrams in Sec 1 = multiframe mode (sec 1 = multiframe m			/	
TSIO	Т	CR2.2	TSYNC I/C 0 = TSYNC 1 = TSYNC	is an input			
TD4YM	Т	CR2.1	0 = 0s in bit	ide D4 Yellov 2 of all chanr e S-bit positic	els		
TB7ZS	Т	CR2.0	0 = no stuffi	ide Bit 7 Zero ng occurs ree to a 1 in ch			

TCR2: TRANSMIT CONTROL REGISTER 2 (Address = 36 Hex)

Table 4-1. Output Pin Test Modes

TEST 1	TEST 0	EFFECT ON OUTPUT PINS
0	0	Operate normally
0	1	Force all output pins tri-state (including all I/O pins and parallel port pins)
1	0	Force all output pins low (including all I/O pins except parallel port pins)
1	1	Force all output pins high (including all I/O pins except parallel port pins)

MSB)		(LSB)			
TESÉ	ODF RSAO	TSCLKM RSCLKM RESE PLB FLB			
SYMBOL	POSITION	NAME AND DESCRIPTION			
TESE	CCR1.7	Transmit Elastic Store Enable. 0 = elastic store is bypassed 1 = elastic store is enabled			
ODF	CCR1.6	Output Data Format. 0 = bipolar data at TPOSO and TNEGO 1 = NRZ data at TPOSO; TNEGO = 0			
RSAO	CCR1.5	 Receive Signaling All 1s. This bit should not be enabled in hardware signaling is being utilized. See Section <u>8</u> for more details. 0 = allow robbed signaling bits to appear at RSER 1 = force all robbed signaling bits at RSER to 1 			
TSCLKM	CCR1.4	TSYSCLK Mode Select. 0 = if TSYSCLK is 1.544MHz 1 = if TSYSCLK is 2.048MHz			
RSCLKM	CCR1.3	RSYSCLK Mode Select. 0 = if RSYSCLK is 1.544MHz 1 = if RSYSCLK is 2.048MHz			
RESE	CCR1.2Receive Elastic Store Enable. $0 =$ elastic store is bypassed $1 =$ elastic store is enabled				
PLB	CCR1.1	Payload Loopback. 0 = loopback disabled 1 = loopback enabled			
FLB	CCR1.0	Framer Loopback. 0 = loopback disabled 1 = loopback enabled			

CCR1: COMMON CONTROL REGISTER 1 (Address = 37 Hex)

4.1 Payload Loopback

When CCR1.1 is set to 1, the DS2152 is forced into Payload Loopback (PLB). Normally, this loopback is only enabled when ESF framing is being performed but can be enabled also in D4 framing applications. In a PLB situation, the DS2152 loops the 192 bits of payload data (with BPVs corrected) from the receive section back to the transmit section. The FPS framing pattern, CRC6 calculation, and the FDL bits are not looped back, rather, they are reinserted by the DS2152. When PLB is enabled, the following occurs:

- 1) Data is transmitted from the TPOSO and TNEGO pins synchronous with RCLK instead of TCLK.
- 2) All the receive side signals continue to operate normally.
- 3) The TCHCLK and TCHBLK signals are forced low.
- 4) Data at the TSER, TDATA, and TSIG pins is ignored.
- 5) The TLCLK signal becomes synchronous with RCLK instead of TCLK.

4.2 Framer Loopback

When CCR1.0 is set to 1, the DS2152 enters a Framer Loopback (FLB) mode. This loopback is useful in testing and debugging applications. In FLB, the DS2152 loops data from the transmit side back to the receive side. When FLB is enabled, the following occurs:

- 1) An unframed all-1s code is transmitted at TPOSO and TNEGO.
- 2) Data at RPOSI and RNEGI is ignored.
- 3) All receive side signals take on timing synchronous with TCLK instead of RCLKI.

Note that it is not acceptable to have RCLK tied to TCLK during this loopback because this causes an unstable condition.

4.3 Pulse Density Enforcer

The SCT always examines both the transmit and receive data streams for violations of the following rules which are required by ANSI T1.403:

- No more than 15 consecutive 0s,
- At least N 1s in each and every time window of 8 x (N + 1) bits where N = 1 through 23,

Violations for the transmit and receive data streams are reported in the RIR2.0 and RIR2.1 bits, respectively. When the CCR3.3 is set to 1, the DS2152 forces the transmitted stream to meet this requirement no matter the content of the transmitted stream. When running B8ZS, the CCR3.3 bit should be set to 0 since B8ZS encoded data streams cannot violate the pulse density requirements.

4.4 Local Loopback

When CCR5.6 is set to 1, the DS2152 is forced into Local Loopback (LLB). In this loopback, data continues to be transmitted as normal through the transmit side of the DS2152 (unless LIAIS = 1). Data being received at RTIP and RRING is replaced with the data being transmitted. Data in this loopback passes through the jitter attenuator. See <u>Figure 1-1</u> for more details. Note that it is not acceptable to have RCLKO tied to TCLKI during this loopback because this causes an unstable condition. Also, it is recommended that the jitter attenuator be placed on the transmit side during this loopback.

TFM SYMBOI	TB8ZS TSLC96	TFDL				
SVMDOI		ITDL	RFM	RB8ZS	RSLC96	RFDL
SIMDUL	POSITION	NAME AND DESCRIPTION				
TFM	CCR2.7	Transmit Frame Mode Select. 0 = D4 framing mode 1 = ESF framing mode				
TB8ZS	CCR2.6	Transmit B8ZS Enable. 0 = B8ZS disabled 1 = B8ZS enabled				
TSLC96	CCR2.5	Transmit SLC-96/Fs-Bit Loading Enable. Only set this bit to a 1 in D4 framing applications. Must be set to 1 to source the F pattern. See Section <u>12</u> for details. 0 = SLC-96/Fs-bit loading disabled $1 = SLC-96/Fs$ -bit loading enabled				
TFDL	CCR2.4	Transmit FDL 0 Stuffer Enable. Set this bit to 0 if using the internal HDLC/BOC controller instead of the legacy support for the FDL. See Section <u>12</u> for details. 0 = 0 stuffer disabled 1 = 0 stuffer enabled				
RFM	CCR2.3	Receive Frame Mode Select. 0 = D4 framing mode 1 = ESF framing mode				
RB8ZS	CCR2.2	Receive B8ZS Enable. 0 = B8ZS disabled 1 = B8ZS enabled				
RSLC96	CCR2.1	Receive SLC-96 Enable. Only set this bit to a 1 in D4/SLC-9 framing applications. See Section <u>12</u> for details. 0 = SLC-96 disabled 1 = SLC-96 enabled				
RFDL	CCR2.0	Receive FDL 0 Destuffer Enable. Set this bit to 0 if using the internal HDLC/BOC controller instead of the legacy support for the FDL. See Section <u>12</u> for details. 0 = 0 destuffer disabled 1 = 0 destuffer enabled				

CCR2: COMMON CONTROL REGISTER 2 (Address = 38 Hex)