imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

www.dalsemi.com

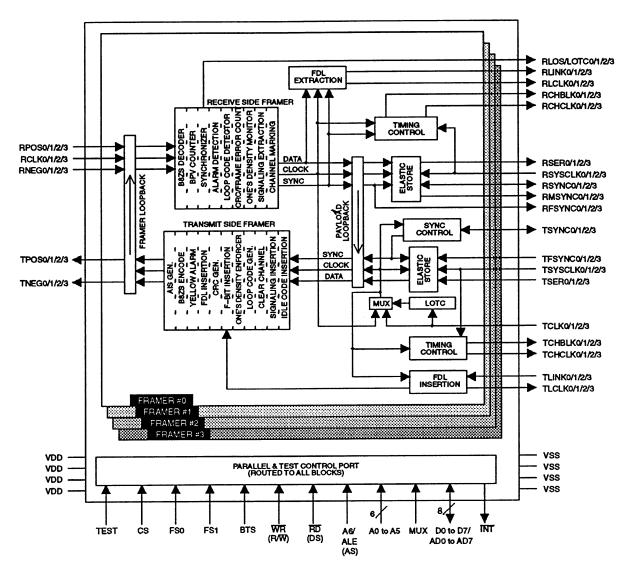
FEATURES

- Four T1 DS1/ISDN-PRI framing transceivers
- All four framers are fully independent
- Frames to D4, ESF, and SLC-96 formats
- 8-bit parallel control port that can be connected to either multiplexed or nonmultiplexed buses
- Each of the four framers contains dual twoframe elastic stores that can connect to asynchronous or synchronous backplanes up to 8.192 MHz
- Extracts and inserts robbed bit signaling
- Framer and payload loopbacks
- Large counters for BPVs, LCVs, EXZs, CRC6, PCVs, F-bit errors and the number of multiframes out of sync
- Contains ANSI 1s density monitor and enforcer
- CSU loop code generator and detector
- Programmable output clocks for Fractional T1, ISDN-PRI, Actual Size and per channel loopback applications
- Onboard FDL support circuitry
- Pin-compatible with DS21Q43 Quad E1 Framer
- 5V supply; low power CMOS
- Available in 128-pin TQFP
- Industrial (-40°C to +85°C) grade version available (DS21Q41BTN)

DESCRIPTION

The DS21Q41B combines four of the popular DS2141A T1 Controllers onto a single monolithic die. The "B" designation denotes that some new features are available in the Quad version that were not available in the single T1 device. The added features in the DS21Q41B are listed in Section 1. The DS21Q41B offers a substantial space savings to applications that require more than one T1 framer on a card. The Quad version is only slightly bigger than the single T1 device. All four framers in the DS21Q41B are totally independent; they do not share a common framing synchronizer. Also, the transmit and receive sides of each framer are totally independent. The dual two-frame elastic stores contained in each of the four framers can be independently enabled and disabled as required. The DS21Q41B meets all of the latest specifications including ANSI T1.403 (and the emerging T1.403-199X), ANSI T1.231-1993, AT&T TR62411, AT&T TR54016, ITU G.704 and G.706.

FUNCTIONAL DIAGRAM


1.0 INTRODUCTION

The DS21Q41B Quad T1 Framer is made up of five main parts: framer #0, framer #1, framer #2, framer #3, and the control port which is shared by all four framers. See the Block Diagram in Figure 1-1. Each of the four framers within the DS21Q41B maintain the same register structure that appeared in the DS2141A. The two framer select inputs (FS0 and FS1) are used to determine which framer within the DS21Q41B is being accessed. In this manner, software written for the DS2141A can also be used with only slight modifications, in the DS21Q41B.

Several new features have been added to the framers in the DS21Q41B over the DS2141A. Below is short list of the new features. More details can be found in Sections 2 through 12.

ADDED FEATURE	SECTION
Non-multiplexed parallel control port operation	2
ANSI ones density monitor (transmit and receive sides) and enforcer (transmit side only)	3 and 4
CSU loop code generator	3
Elastic store reset and minimum delay mode	3 and 10
Divide RSYNC output by two for D4 to ESF conversion applications	3
TCLK keep alive	3
Indications of transmit side elastic store slip direction	4
Ability to decouple the receive and transmit elastic stores	10
Counting of excessive 0s (EXZs)	5

DS21Q41B BLOCK DIAGRAM Figure 1-1

TRAN	FRANSMIT PIN LIST Table 1-1					
PIN	SYMBOL	ТҮРЕ	DESCRIPTION			
19	TCLK0	Ι	Transmit Clock for Framer 0			
53	TCLK1	Ι	Transmit Clock for Framer 1			
87	TCLK2	Ι	Transmit Clock for Framer 2			
113	TCLK3	Ι	Transmit Clock for Framer 3			
126	TSER0	Ι	Transmit Serial Data for Framer 0			
32	TSER1	Ι	Transmit Serial Data for Framer 1			
66	TSER2	Ι	Transmit Serial Data for Framer 2			
92	TSER3	Ι	Transmit Serial Data for Framer 3			
128	TCHCLK0	0	Transmit Channel Clock from Framer 0			
34	TCHCLK1	0	Transmit Channel Clock from Framer 1			
68	TCHCLK2	0	Transmit Channel Clock from Framer 2			
94	TCHCLK3	0	Transmit Channel Clock from Framer 3			
1	TCHBLK0	0	Transmit Channel Block from Framer 0			
35	TCHBLK1	0	Transmit Channel Block from Framer 1			
69	TCHBLK2	0	Transmit Channel Block from Framer 2			
95	TCHBLK3	0	Transmit Channel Block from Framer 3			
20	TLCLK0	0	Transmit Link Clock from Framer 0			
54	TLCLK1	0	Transmit Link Clock from Framer 1			
88	TLCLK2	0	Transmit Link Clock from Framer 2			
114	TLCLK3	0	Transmit Link Clock from Framer 3			
22	TLINK0	Ι	Transmit Link Data for Framer 0			
56	TLINK1	Ι	Transmit Link Data for Framer 1			
90	TLINK2	Ι	Transmit Link Data for Framer 2			
116	TLINK3	Ι	Transmit Link Data for Framer 3			
2	TPOS0	0	Transmit Bipolar Data from Framer 0			
36	TPOS1	0	Transmit Bipolar Data from Framer 1			
70	TPOS2	0	Transmit Bipolar Data from Framer 2			
96	TPOS3	0	Transmit Bipolar Data from Framer 3			
3	TNEG0	0	Transmit Bipolar Data from Framer 0			
37	TNEG1	0	Transmit Bipolar Data from Framer 1			
71	TNEG2	0	Transmit Bipolar Data from Framer 2			
97	TNEG3	0	Transmit Bipolar Data from Framer 3			
21	TSYNC0	I/O	Transmit Sync for Framer 0			
55	TSYNC1	I/O	Transmit Sync for Framer 1			
89	TSYNC2	I/O	Transmit Sync for Framer 2			
115	TSYNC3	I/O	Transmit Sync for Framer 3			

127	TFSYNC0	Ι	Transmit Sync for Elastic Store in Framer 0			
33	TFSYNC1	Ι	Transmit Sync for Elastic Store in Framer 1			
67	TFSYNC2	Ι	Transmit Sync for Elastic Store in Framer 2			
93	TFSYNC3	Ι	Transmit Sync for Elastic Store in Framer 3			
125	TSYSCLK0	Ι	Transmit System Clock for Elastic Store in Framer 0			
31	TSYSCLK1	Ι	Transmit System Clock for Elastic Store in Framer 1			
65	TSYSCLK2	Ι	Transmit System Clock for Elastic Store in Framer 2			
91	TSYSCLK3	Ι	Transmit System Clock for Elastic Store in Framer 3			

RECEIVE PIN LIST Table 1-2

PIN	SYMBOL	TYPE	DESCRIPTION			
6	RCLK0	I	Receive Clock for Framer 0			
40	RCLK1	I	Receive Clock for Framer 1			
74	RCLK1	I	Receive Clock for Framer 2			
-						
100	RCLK3	Ι	Receive Clock for Framer 3			
13	RSER0	0	Receive Serial Data from Framer 0			
49	RSER1	0	Receive Serial Data from Framer 1			
83	RSER2	0	Receive Serial Data from Framer 2			
107	RSER3	0	Receive Serial Data from Framer 3			
9	RCHCLK0	0	Receive Channel Clock from Framer 0			
43	RCHCLK1	0	Receive Channel Clock from Framer 1			
77	RCHCLK2	0	Receive Channel Clock from Framer 2			
103	RCHCLK3	0	Receive Channel Clock from Framer 3			
10	RCHBLK0	0	Receive Channel Block from Framer 0			
44	RCHBLK1	0	Receive Channel Block from Framer 1			
80	RCHBLK2	0	Receive Channel Block from Framer 2			
104	RCHBLK3	0	Receive Channel Block from Framer 3			
5	RLCLK0	0	Receive Link Clock from Framer 0			
39	RLCLK1	0	Receive Link Clock from Framer 1			
73	RLCLK2	0	Receive Link Clock from Framer 2			
99	RLCLK3	0	Receive Link Clock from Framer 3			
4	RLINK0	0	Receive Link Data from Framer 0			
38	RLINK1	0	Receive Link Data from Framer 1			
72	RLINK2	0	Receive Link Data from Framer 2			
98	RLINK3	0	Receive Link Data from Framer 3			
8	RPOS0	Ι	Receive Bipolar Data for Framer 0			
42	RPOS1	Ι	Receive Bipolar Data for Framer 1			
76	RPOS2	Ι	Receive Bipolar Data for Framer 2			

			D\$21Q41B
102	RPOS3	Ι	Receive Bipolar Data for Framer 3
7	RNEG0	Ι	Receive Bipolar Data for Framer 0
41	RNEG1	Ι	Receive Bipolar Data for Framer 1
75	RNEG2	Ι	Receive Bipolar Data for Framer 2
101	RNEG3	Ι	Receive Bipolar Data for Framer 3
12	RSYNC0	I/O	Receive Sync for Framer 0
48	RSYNC1	I/O	Receive Sync for Framer 1
82	RSYNC2	I/O	Receive Sync for Framer 2
106	RSYNC3	I/O	Receive Sync for Framer 3
17	RFSYNC0	0	Receive Frame Sync from Framer 0
51	RFSYNC1	0	Receive Frame Sync from Framer 1
85	RFSYNC2	0	Receive Frame Sync from Framer 2
109	RFSYNC3	0	Receive Frame Sync from Framer 3
16	RMSYNC0	0	Receive Multiframe Sync from Framer 0
50	RMSYNC1	0	Receive Multiframe Sync from Framer 1
84	RMSYNC2	0	Receive Multiframe Sync from Framer 2
108	RMSYNC3	0	Receive Multiframe Sync from Framer 3
11	RSYSCLK0	Ι	Receive System Clock for Elastic Store in Framer 0
45	RSYSCLK1	Ι	Receive System Clock for Elastic Store in Framer 1
81	RSYSCLK2	Ι	Receive System Clock for Elastic Store in Framer 2
105	RSYSCLK3	Ι	Receive System Clock for Elastic Store in Framer 3
18	RLOS/LOTC0	0	Receive Loss of Sync/Loss of Transmit Clock from Framer 0
52	RLOS/LOTC1	0	Receive Loss of Sync/Loss of Transmit Clock from Framer 1
86	RLOS/LOTC2	0	Receive Loss of Sync/Loss of Transmit Clock from Framer 2
112	RLOS/LOTC3	0	Receive Loss of Sync/Loss of Transmit Clock from Framer 3

CONT	CONTROL PORT/TEST/SUPPLY PIN LIST Table 1-3					
PIN	SYMBOL	TYPE	DESCRIPTION			
57	TEST	Ι	3-State Control for all Output and I/O Pins			
60	CS	Ι	Chip Select			
58	FS0	Ι	Framer Select 0 for Parallel Control Port			
59	FS1	Ι	Framer Select 1 for Parallel Control Port			
61	BTS	Ι	Bus Type Select for Parallel Control Port			
63	$\overline{\mathrm{WR}} \left(\mathrm{R} / \overline{\mathrm{W}} \right)$	Ι	Write Input (Read/Write)			
62	\overline{RD} (DS)	Ι	Read Input (Data Strobe)			
23	A0	Ι	Address Bus Bit 0; LS			
24	A1	Ι	Address Bus Bit 1			
25	A2	Ι	Address Bus Bit 2			
26	A3	Ι	Address Bus Bit 3			
27	A4	Ι	Address Bus Bit 4			
28	A5	Ι	Address Bus Bit 5			
29	A6 or ALE (AS)	Ι	Address Bus Bit 6; MSB or Address Latch Enable (Address Strobe)			
30	INT	0	Receive Alarm Interrupt for all Four Framers			
64	MUX	Ι	Non-Multiplexed or Multiplexed Bus Select			
117	D0 or AD0	I/O	Data Bus Bit 0 or Address/Data Bus Bit 0; LSB			
118	D1 or AD1	I/O	Data Bus Bit 1 or Address/Data Bus Bit 1			
119	D2 or AD2	I/O	Data Bus Bit 2 or Address/Data Bus Bit 2			
120	D3 or AD3	I/O	Data Bus Bit 3 or Address/Data Bus Bit 3			
121	D4 or AD4	I/O	Data Bus Bit 4 or Address/Data Bus Bit 4			
122	D5 or AD5	I/O	Data Bus Bit 5 or Address/Data Bus Bit 5			
123	D6 or AD6	I/O	Data Bus Bit 6 or Address/Data Bus Bit 6			
124	D7 or AD7	I/O	Data Bus Bit 7 or Address/Data Bus Bit 7; MSB			
15	V _{DD}	Ι	Positive Supply Voltage			
47	V_{DD}	-	Positive Supply Voltage			
79	V_{DD}	-	Positive Supply Voltage			
111	V_{DD}	-	Positive Supply Voltage			
14	V _{SS}	-	Signal Ground			
46	V _{SS}	-	Signal Ground			
78	V _{SS}	-	Signal Ground			
110	V _{SS}	-	Signal Ground			

DS21Q41B PIN DESCRIPTION Table 1-4

Transmit Clock [TCLK]. 1.544 MHz primary clock. Used to clock data through the transmit side formatter.

Transmit Serial Data [TSER]. Transmit NRZ serial data. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.

Transmit Channel Clock [TCHCLK]. 192 kHz clock which pulses high during the LSB of each channel. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for parallel to serial conversion of channel data, locating robbed-bit signaling bits, and for blocking clocks in DDS applications. See Section 12 for timing details.

Transmit Bipolar Data [TPOS and TNEG]. Updated on rising edge of TCLK. Can be programmed to output NRZ data on TPOS via the TCR1.7 control bit.

Transmit Channel Block [TCHBLK]. A user programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used such as Fractional T1, 384k bps service, 768k bps, or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications and for per-channel loopback. See Section 12 for timing details.

Transmit System Clock [TSYSCLK]. 1.544 MHz or 2.048 MHz clock. Only used when the transmit side elastic store function is enabled. Should be tied low in applications that do not use the transmit side elastic store.

Transmit Link Clock [TLCLK]. 4 kHz or 2 kHz (ZBTSI) demand clock for the TLINK input. See Section 12 for timing details.

Transmit Link Data [TLINK]. If enabled via TCR1.2, this pin will be sampled during the F-bit time on the falling edge of TCLK for data insertion into either the FDL stream (ESF) or the Fs bit position (D4) or the Z-bit position (ZBTSI). See Section 12 for timing details.

Transmit Sync [TSYNC]. A pulse at this pin will establish either frame or multiframe boundaries for the DS21Q41B. Via TCR2.2, the DS21Q41B can be programmed to output either a frame or multiframe pulse at this pin. If this pin is set to output pulses at frame boundaries, it can also be set via TCR2.4 to output double-wide pulses at signaling frames. See Section 12 for timing details.

Transmit Frame Sync [TFSYNC]. 8 kHz pulse. Only used when the transmit side elastic store is enabled. A pulse at this pin will establish frame boundaries for the DS21Q41B. Should be tied low in applications that do not use the transmit side elastic store. See Section 12 for timing details.

Receive Link Data [RLINK]. Updated with either FDL data (ESF) or Fs bits (D4) or Z bits (ZBTSI) one RCLK before the start of a frame. See Section 12 for timing details.

Receive Link Clock [RLCLK]. 4 kHz or 2 kHz (ZBTSI) demand clock for the RLINK input. See Section 12 for timing details.

Receive Clock [RCLK]. 1.544 MHz primary clock. Used to clock data through the receive side of the framer.

Receive Channel Clock [RCHCLK]. 192 kHz clock which pulses high during the LSB of each channel. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for parallel to serial conversion of channel data, locating robbed-bit signaling bits, and for blocking clocks in DDS applications. See Section 12 for timing details.

Receive Channel Block [RCHBLK]. A user programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used such as Fractional T1, 384k bps service, 768k bps, or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications and for per-channel loopback. See Section 12 for timing details.

Receive Serial Data [RSER]. Received NRZ serial data. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled.

Receive Sync [RSYNC]. An extracted pulse, one RCLK wide, is output at this pin which identifies either frame (RCR2.4=0) or multiframe boundaries (RCR2.4=1). If set to output frame boundaries, then via RCR2.5, RSYNC can also be set to output double-wide pulses on signaling frames. If the receive side elastic store is enabled, then this pin can be enabled to be an input at which a frame boundary pulse is applied. See Section 12 for timing details.

Receive Frame Sync (RFSYNC). An extracted 8 kHz pulse, one RCLK wide, is output at this pin which identifies frame boundaries. See Section 12 for timing details.

Receive Multiframe Sync [RMSYNC]. Only used when the receive side elastic store is enabled. An extracted pulse, one RSYSCLK wide, is output at this pin which identifies multiframe boundaries. If the receive side elastic store is disabled, then this output should be ignored. See Section 12 for timing details.

Receive Bipolar Data Inputs [RPOS and RNEG]. Sampled on falling edge of RCLK. Tie together to receive NRZ data and disable bipolar violation monitoring circuitry.

Receive System Clock [RSYSCLK]. 1.544 MHz or 2.048 MHz clock. Only used when the elastic store function is enabled. Should be tied low in applications that do not use the elastic store. Allowing this pin to float can cause the device to 3-state its outputs.

Receive Loss of Sync/Loss of Transmit Clock [RLOS/LOTC]. A dual function output. If CCR1.6=0, then this pin will toggle high when the synchronizer is searching for the T1 frame and multiframe. If CCR1.6=1, then this pin will toggle high if the TCLK pin has not been toggled for 5 μ s.

Receive Alarm Interrupt [\overline{INT}]. Flags host controller during conditions defined in the Status Registers of the four framers. User can poll the Interrupt Status Register (ISR) to determine which status register in which framer is active (if any). Active low, open drain output.

3-State Control [Test]. Set high to 3-state all output and I/O pins (including the parallel control port). Set low for normal operation. Useful in board-level testing.

Bus Operation [MUX]. Set low to select non-multiplexed bus operation. Set high to select multiplexed bus operation.

Data Bus [D0 to D7] or Address/Data Bus [AD0 to AD7]. In non-multiplexed bus operation (MUX=0), serves as the data bus. In multiplexed bus operation (MUX=1), serves as an 8-bit multiplexed address/data bus.

Address Bus [A0 to A5]. In non-multiplexed bus operation (MUX=0), serves as the address bus. In multiplexed bus operation (MUX=1), these pins are not used and should be tied low.

Bus Type Select [BTS]. Strap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls the function of the \overline{RD} (DS), ALE(AS), and \overline{WR} (R/ \overline{W}) pins. If BTS=1, then these pins assume the function listed in parentheses ().

Read Input [RD] (Data Strobe [DS]).

Framer Selects [FS0 and FS1]. Selects which of the four framers to be accessed.

Chip Selects [\overline{CS}]. Must be low to read or write to any of the four framers.

A6 or Address Latch Enable [ALE] (Address Strobe [AS]). In non-multiplexed bus operation (MUX=0), serves as the upper address bit. In multiplexed bus operation (MUX=1), serves to demultiplex the bus on a positive-going edge.

Write Input [\overline{WR}] (Read/Write [R/ \overline{W}]).

Positive Supply [V_{DD}]. 5.0 volts ±0.5 volts.

Signal Ground [V_{SS}]. 0.0 volts.

DS21Q41B	REGIS	TER MAP Table 1-5
ADDRESS	R/W	REGISTER NAME
20	R/W	Status Register 1
21	R/W	Status Register 2
22	R/W	Receive Information Register 1
23	R	Line Code Violation Count Register 1
24	R	Line Code Violation Count Register 2
25	R	Path Code Violation Count Register 1 ⁽¹⁾
26	R	Path Code Violation Count Register 2
27	R	Multiframe Out of Sync Count Register 2
28	R	Receive FDL Register
29	R/W	Receive FDL Match Register 1
2A	R/W	Receive FDL Match Register 2
2B	R/W	Receive Control Register 1
2C	R/W	Receive Control Register 2
2D	R/W	Receive Mark Register 1
2E	R/W	Receive Mark Register 2
2F	R/W	Receive Mark Register 3
30	R/W	Common Control Register 3
31	R/W	Receive Information Register 2
32	R/W	Transmit Channel Blocking Register 1
33	R/W	Transmit Channel Blocking Register 2
34	R/W	Transmit Channel Blocking Register 3
35	R/W	Transmit Control Register 1
36	R/W	Transmit Control Register 2
37	R/W	Common Control Register 1
38	R/W	Common Control Register 2
39	R/W	Transmit Transparency Register 1
3A	R/W	Transmit Transparency Register 2
3B	R/W	Transmit Transparency Register 3
3C	R/W	Transmit Idle Register 1
3D	R/W	Transmit Idle Register 2
3E	R/W	Transmit Idle Register 3
3F	R/W	Transmit Idle Definition Register
60	R	Receive Signaling Register 1
61	R	Receive Signaling Register 2
62	R	Receive Signaling Register 3
63	R	Receive Signaling Register 4

ADDRESS	R/W	REGISTER NAME
64	R	Receive Signaling Register 5
65	R	Receive Signaling Register 6
66	R	Receive Signaling Register 7
67	R	Receive Signaling Register 8
68	R	Receive Signaling Register 9
69	R	Receive Signaling Register 10
6A	R	Receive Signaling Register 11
6B	R	Receive Signaling Register 12
6C	R/W	Receive Channel Blocking Register 1
6D	R/W	Receive Channel Blocking Register 2
6E	R/W	Receive Channel Blocking Register 3
6F	R/W	Interrupt Mast Register 2
70	R/W	Transmit Signaling Register 1
71	R/W	Transmit Signaling Register 2
72	R/W	Transmit Signaling Register 3
73	R/W	Transmit Signaling Register 4
74	R/W	Transmit Signaling Register 5
75	R/W	Transmit Signaling Register 6
76	R/W	Transmit Signaling Register 7
77	R/W	Transmit Signaling Register 8
78	R/W	Transmit Signaling Register 9
79	R/W	Transmit Signaling Register 10
7A	R/W	Transmit Signaling Register 11
7B	R/W	Transmit Signaling Register 12
7C	R/W	Test Register ⁽²⁾
7D	R/W	Test Register ⁽²⁾
7E	R/W	Transmit FDL Register
7F	R/W	Interrupt Mask Register 1

NOTES:

- 1. Address 25 also contains Multiframe Out of Sync Count Register 1.
- 2. The Test Registers are used only by the factory; these registers must be cleared (set to all 0s) on power-up initialization to insure proper operation.
- 3. Any unused register address will allow the status of the interrupts to appear on the bus.

DS21Q41B FRAMER DECODE Table 1-6							
FS1	FS0	FRAMER ACCESSED					
0	0	#0					
0	1	#1					
1	0	#2					
1	1	#3					

2.0 PARALLEL PORT

.

The DS21Q41B is controlled via either a non-multiplexed (MUX=0) or multiplexed (MUX=1) by an external microcontroller or microprocessor. The DS21Q41B can operate with either Intel or Motorola bus timing configurations. If the BTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parenthesis (). See the timing diagrams in the A.C. Electrical Characteristics for more details.

3.0 CONTROL REGISTERS

The operation of each framer within the DS21Q41B is configured via a set of seven registers. Typically, the control registers are only accessed when the system is first powered up. Once the DS21Q41B has been initialized, the control registers will only need to be accessed when there is a change in the system configuration. There are two Receive Control Registers (RCR1 and RCR2), two Transmit Control Registers (TCR1 and TCR2), and three Common Control Registers (CCR1, CCR2, and CCR3).

RCR1: RECEIVE CONTROL REGISTER 1 (Address=2B Hex) (MSB) (LSB) LCVCRF ARC **SYNCC** CYNCT **SYNCE** RESYNC OOF1 OOF2 **SYMBOL** POSITION NAME AND DESCRIPTION LCVCRF **RCR1.7** Line Code Violation Count Register Function Select. 0=do not count excessive 0s 1=count excessive 0s ARC **RCR1.6** Auto Resync Criteria. 0=Resync on OOF or RCL event 1=Resync on OOF only OOF1 **RCR1.5 Out Of Frame Select 1.** 0=2/4 frame bits in error 1=2/5 frame bits in error **Out Of Frame Select 2.** OOF2 **RCR1.4** 0=follow RCR1.5 1=2/6 frame bits in error **SYNCC RCR1.3** Sync Criteria. In D4 Framing Mode. 0=search for Ft pattern, then search for Fs pattern 1=cross couple Ft and Fs pattern In ESF Framing Mode. 0=search for FPS pattern only 1=search for FPS and verify with CRC6 **SYNCT RCR1.2** Sync Time. 0=qualify 10 bits 1=qualify 24 bits SYNCE RCR1.1 Svnc Enable. 0=auto resync enabled 1=auto resync disabled RESYNC **RCR1.0 Resync.** When toggled from low to high, a resynchronization of

RESYNC RCR1.0 **Resync.** When toggled from low to high, a resynchronization of the receive side framer is initiated. Must be cleared and set again for a subsequent resync.

/ 8 . . • ` F

RCR2: RE		CONTROL	REGISTEF	R 2 (Addre	ss=2C He	x)	
(MSB)							(LSB)
RCS	ZBTSI	RSDW	RSM	RSIO	D4YM	FSBE	MOSCRF
SYN	ABOL	POSITION	NAME ANI) DESCRIPT	ΓΙΟΝ		
R	RCS	RCR2.7	Receive Cod 0=idle code (1=digital mil	(7F Hex)	1E/0B/0B/1E	/9E/8B/8B/9I	E Hex)
ZI	ZBTSI RCR2.6		ZBTSI Enable. 0=ZBTSI disabled 1=ZBTSI enabled				
RS	RSDW RCR2.5		RSYNC Double-Wide. 0=do not pulse double-wide in signaling frames 1=do pulse double-wide in signaling frames (note: this bit must be set to 0 when RCR2.4=1 or when RCR2.3=1)				
R	SM	RCR2.4		le (see the tin	ning in Section he timing in S		
R	SIO	RCR2.3		s an output s an input (or	nly valid if el hen CCR1.2=		abled) (note:
D	1VM	PCP22	D4 Vollow A	Jorm Soloot			

D4YM **RCR2.2 D4 Yellow Alarm Select.** 0=0s in bit 2 of all channels 1=a one in the S-bit position of frame 12

FSBE **RCR2.1 PCVCR Fs Bit Error Report Enable.** 0=do not report bit errors in Fsbit position; only Ft bit position 1=report bit errors in Fs bit position as well as Ft bit position

MOSCRF **RCR2.0** Multiframe Out of Sync Count Register Function Select. 0=count errors in the framing bit position 1=count the number of multiframes out of sync

(MSB)			L REGISTI			,	(LSB)
LOTCMC	TFPT	TCPT	RBSE	GB7S	TLINK	TBL	TYEL
SYMBOL POSITION			NAME ANI) DESCRIP	ΓΙΟΝ		
LOT	CMC	TCR1.7	the transmit RCLK if the for details). 0=do not sw	side format TCLK input	ter should sy should fail to if TCLK sto	trol. Determination to the transition (see ps	ever present
TF	FPT	TCR1.6	0=Ft or FPS	bits sourced	internally	ee note below ing F-bit time	
TC	CPT	TCR1.5	0=source CF	C6 bits inter	r ough. (see no nally TSER during		
RE	3SE	TCR1.4	0=no signali 1=signaling	ng is inserted is inserted in			
GI	37S	TCR1.3	0=allow the containing at 1=force Bit	e TTR regi Il 0s are to be	Bit 7 stuffed all 0-byte ch	termine whi	
TL	INK	TCR1.2	0=source FD		below) from TFDL re from the TLIN		
T	BL	TCR1.1	0=transmit d	ata normally	see note below	w) at TPOS and T	ГNEG
ТҮ	'EL	TCR1.0		nsmit yellow	. (see note bel alarm	low)	

Note: for a detailed description of how the bits in TCR1 affect the transmit side formatter of the DS21Q41, please see Figure 12-9.

TCR2: TRANSMIT CONTROL REGISTER 2 (Address=36 Hex)

(MSB)		conno			633–00 m	57)	(LSB)
TEST1	TEST0	ZBTSI	TSDW	TSM	TSIO	D4YM	B7ZS
SYN	IBOL	POSITION	NAME AND	DESCRIPT	ΓΙΟΝ		
TE	EST1	TCR2.7	Test Mode E	Bit 1 for Out	put Pins. See	Table 3-1.	
TE	EST0	TCR2.6	Test Mode Bit 0 for Output Pins. See Table 3-1.				
ZF	BTSI	TCR2.5	ZBTSI Enable. 0=ZBTSI disabled 1=ZBTSI enabled				
TS	SDW	TCR2.4	 TSYNC Double-Wide. (Note: this bit must be set to 0 TCR2.3=1 or when TCR2.2=0) 0=do not pulse double-wide in signaling frames 1=do pulse double-wide in signaling frames 				t to 0 when
TSM TCR2.3		TCR2.3	TSYNC Mode Select. 0=frame mode (see the timing in Section 12) 1=multiframe mode (see the timing in Section 12)				
TSIO TCR2.2			TSYNC I/O Select. 0=TSYNC is an input 1=TSYNC is an output				
D4	łΥM	TCR2.1	D4 Yellow Alarm Select. 0=0s in bit 2 of all channels 1=a 1 in the S-bit position of frame 12				
B7ZS TCR2.0			Bit 7 0 Suppression Enable. 0=no stuffing occurs 1=Bit 7 force to a 1 in channels with all 0s				

OUTPUT PIN TEST MODES Table 3-1

TEST1	TEST0	EFFECT ON OUTPUT PINS
0	0	Operate normally
0	1	Force all output pins 3-state (including all I/O pins and parallel port pins)
1	0	Force all output pins low (including all I/O pins except parallel port pins)
1	1	Force all output pins high (including all I/O pins except parallel port pins)

MSB)			L REGISTER 1 (Address=37 Hex) (LSE				
TESE	ODF	F RSAO	TSCLKM RSCLKM RESE PLB FLB				
SYN	MBOL	POSITION	NAME AND DESCRIPTION				
Т	ESE	CCR1.7	Transmit Elastic Store Enable. 0=elastic store is bypassed 1=elastic store is enabled				
C)DF	CCR1.6	Output Data Format. 0=bipolar data at TPOS and TNEG 1=NRZ data at TPOS; TNEG=0				
R	SAO	CCR1.5	Receive Signaling All ones. 0=allow robbed signaling bits to appear at RSER 1=force all robbed signaling bits at RSER to 1				
TSCLKM CCR1.4		CCR1.4	TSYSCLK Mode Select. 0=if TSYSCLK is 1.544 MHz 1=if TSYSCLK is 2.048 MHz				
RSCLKM CCR1.3		CCR1.3	RSYSCLK Mode Select. 0=if RSYSCLK is 1.544 MHz 1=if RSYSCLK is 2.048 MHz				
RESE CCR1.2		CCR1.2	Receive Elastic Store Enable. 0=elastic store is bypassed 1=elastic store is enabled				
PLB CCR1.1		CCR1.1	Payload Loopback. 0=loopback disabled 1=loopback enabled				
H	FLB	CCR1.0	Framer Loopback. 0=loopback disabled 1=loopback enabled				

DEALATED

. . .

PAYLOAD LOOPBACK

When CCR1.1 is set to a one, the DS21Q41B will be forced into Payload LoopBack (PLB). Normally, this loopback is only enabled when ESF framing is being performed. In a PLB situation, the DS21Q41B will loop the 192 bits of payload data (with BPVs corrected) from the receive section back to the transmit section. The FPS framing pattern, CRC6 calculation, and the FDL bits are not looped back; they are reinserted by the DS21Q41B. When PLB is enabled, the following will occur:

- 1. Data will be transmitted from the TPOS and TNEG pins synchronous with RCLK instead of TCLK.
- 2. All of the receive side signals will continue to operate normally.
- 3. The TCHCLK and TCHBLK signals are forced low.
- 4. Data at the TSER pin is ignored.
- 5. The TLCLK signal will become synchronous with RCLK instead of TCLK.

FRAMER LOOPBACK

When CCR1.0 is set to a 1, the DS21Q41B will enter a Framer LoopBack (FLB) mode. This loopback is useful in testing and debugging applications. In FLB, the DS21Q41B will loop data from the transmit side back to the receive side. When FLB is enabled, the following will occur:

- 1. An unframed all 1s code will be transmitted at TPOS and TNEG.
- 2. Data at RPOS and RNEG will be ignored.
- 3. All receive side signals will take on timing synchronous with TCLK instead of RCLK.

CCR2: COMMON CONTROL REGISTER 2 (Address=38 Hex)

MSB)	-							(LSB)
TFM	TB8Z	ĊS	TSLC96	TFDL	RFM	RB8ZS	RSLC96	RFDL
SYN	ABOL	PO	OSITION	NAME ANI	DESCRIP	ΓΙΟΝ		
Т	FM		CCR2.7	Transmit Fr 0=D4 framin 1=ESF frami	g mode	Select.		
TE	38ZS		CCR2.6	Transmit B8 0=B8ZS disa 1=B8ZS enal	bled			
TS	LC96		CCR2.5	Transmit SI 0=SLC-96 di 1=SLC-96 er	sabled	Insertion E	nable.	
T	FDL		CCR2.4	Transmit 0 Stuffer Enable. 0=0 stuffer disabled 1=0 stuffer enabled				
R	FM		CCR2.3	Receive Fra 0=D4 framin 1=ESF frami	g mode	lect.		
RI	38ZS		CCR2.2	Receive B8Z 0=B8ZS disa 1=B8ZS enal	bled			
RS	LC96		CCR2.1	Receive SLC-96 Enable. 0=SLC-96 disabled 1=SLC-96 enabled				
R	FDL	RFDL CCR2.0			estuffer Ena disabled enabled	ble.		

CCR3: CC (MSB)	OMMON	CONTROL	. REGISTE	R 3 (Addre	ess=30 He	x)	(LSB)
ESMDM	ESR	RLOS	RSMS	PDE	TLD	TLU	-
SYN	ABOL	POSITION	NAME ANI	D DESCRIP	ΓΙΟΝ		
ESI	MDM	CCR3.7	details. 0=elastic stor	re Minimum res operate at res operate at	full two-fran	de. See Sectine depth	on 10.3 for
Ε	ESR	CCR3.6	elastic store RSYSCLK a	es to a kno and TSYSCL	wn depth. S K have beer	om a 0 to a 1 v Should be to n applied and sequent reset.	oggled after d are stable.
RI	LOS	CCR3.5	0=Receive L	the RLOS/L oss of Sync (ransmit Clock	RLOS)	t.	
RS	SMS	CCR3.4	conversions = 0=RSYNC w 1=RSYNC w for this bit to	from D4 to E vill output a p will output a	SF. oulse at every pulse at ever fect, the RSY	ry other mult NC must be	iframe note:
Р	РDE	CCR3.3	0=disable tra	ty Enforcer H Insmit pulse d Insmit pulse de	lensity enforc		
Т	ĽD	CCR3.2	0=transmit d	•		loop down co	ode
Т	ĽU	CCR3.1	0=transmit d	•		loop up code	
	-	CCR3.0	Not Assigne	d. Must be se	et to 0 when w	vritten	

LOOP CODE GENERATION

When either the CCR3.1 or CCR3.2 bits are set to one, the DS21Q41B will replace the normal transmitted payload with either the Loop Up or Loop Down code respectively. The DS21Q41B will overwrite the repeating loop code pattern with the framing bits. The SCT will continue to transmit the loop codes as long as either bit is set. It is an illegal state to have both CCR3.1 and CCR3.2 set to 1 at the same time.

PULSE DENSITY ENFORCER

The DS21Q41B always examines both the transmit and receive data streams for violations of the following rules which are required by ANSI T1.403-1989: - no more than 15 consecutive 0s - at least N ones in each and every time window of 8 x (N +1) bits where N=1 through 23. Violations for the transmit and receive data streams are reported in the RIR2.2 and RIR2.1 bits, respectively.

When the CCR3.3 is set to 1, the DS21Q41B will force the transmitted stream to meet this requirement no matter the content of the transmitted stream. When running B8ZS, the CCR3.3 bit should be set to 0 since B8ZS encoded data streams cannot violate the pulse density requirements.

POWER-UP SEQUENCE

On power-up, after the supplies are stable, the DS21Q41B should be configured for operation by writing to all of the internal registers (this includes setting the Test Registers to 00Hex) since the contents of the internal registers cannot be predicted on power-up. Finally, after the TSYSCLK and RSYSCLK inputs are stable, the ESR bit should be toggled from a 0 to a 1 (this step can be skipped if the elastic stores are disabled).

4.0 STATUS AND INFORMATION REGISTERS

There is a set of four registers that contain information on the current real time status of the DS21Q41B, Status Register 1 (SR1), Status Register 2 (SR2), Receive Information Register 1 (RIR1), and Receive Information Register 2 (RIR2). When a particular event has occurred (or is occurring), the appropriate bit in one of these four registers will be set to a 1. All of the bits in these registers operate in a latched fashion. This means that if an event occurs and a bit is set to a 1 in any of the registers, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again or if the alarm(s) is still present.

The user will always precede a read of these registers with a write. The byte written to the register will inform the DS21Q41B which bits the user wishes to read and have cleared. The user will write a byte to one of these four registers, with a 1 in the bit positions he or she wishes to read and a 0 in the bit positions he or she does not wish to obtain the latest information on. When a 1 is written to a bit location, the read register will be updated with current value and it will be cleared. When a 0 is written to a bit position, the read register will not be updated and the previous value will be held. A write to the status and information registers will be immediately followed by a read of the same register. The read result should be logically AND'ed with the mask byte that was just written and this value should be written back into the same register to insure that the bit does indeed clear. This second write is necessary because the alarms and events in the status registers occur asynchronously in respect to their access via the parallel port. The write-read-write scheme is unique to the four status registers and it allows an external microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the DS21Q41B with higher-order software languages.

The SR1 and SR2 registers have the unique ability to initiate a hardware interrupt via the \overline{INT} output pin. All four framers within the DS21Q41B share the \overline{INT} output. Each of the alarms and events in the SR1 and SR2 can be either masked or unmasked from the interrupt pins via the Interrupt Mask Register 1 (IMR1) and Interrupt Mask Register 2 (IMR2) respectively. The user can determine which framer has active interrupts by polling the Interrupt Status Register (ISR).

ISR: INTERRUPT STATUS REGISTER (any unused address)

							DS21Q411
	RRUPTS	STATUS F	REGISTER	(any unus	ed address	S)	
(MSB) F3SR2	F3SR1	F2SR2	F2SR1	F1SR2	F1SR1	F0SR2	(LSB) F0SR1
SYN	ABOL P	OSITION	NAME ANI) DESCRIPT	ΓΙΟΝ		
F3	SR2	ISR.7	Status of Int 1=interrupt a		R2 in Frame	er 3.	
F3	SR1	ISR.6	Status of Int 1=interrupt a	-	R1 in Frame	er 3.	
F2	2SR2	ISR.5	Status of Int 1=interrupt a		R2 in Frame	er 2.	
F2	2SR1	ISR.4	Status of Int 1=interrupt a	-	R1 in Frame	er 2.	
F1SR2 IS		ISR.3	Status of Int 1=interrupt a	-	R2 in Frame	er 1.	
F1SR1		ISR.2	Status of Int 1=interrupt a		R1 in Frame	er 1.	
		Status of Int 1=interrupt a	-	R2 in Frame	er 0.		
F	SR1	ISR.0	Status of Int 1=interrupt a		R1 in Frame	er 0.	

RIR1: RECEIVE INFORMATION REGISTER 1 (Address=22 Hex)

(MSB)

(LSB)

COFA	8ZD	16ZD	RESF	RESE	SEFE	B8ZS	FBE
SYM	IBOL PO	OSITION	NAME ANI) DESCRIPT	TION		
CO	DFA	RIR1.7	Change of F in a change c	-		en the last res nment.	ync resulted
82	ZD	RIR1.6	0	of the length	•	least eight co g) have been	
16	δZD	RIR1.5		of the length		at least 16 co g) have been	
RI	ESF	RIR1.4		stic Store Fund a frame is o		the receive	elastic store
RI	ESE	RIR1.3		stic Store Enter the stand a frame		en the receive	elastic store
SE	EFE	RIR1.2	•	rored Framin (S) are receive	0	t when 2 out	of 6 framing
B	3ZS	RIR1.1	detected at R	POS and RN acted or not	EG independ	n a B8ZS co lent of wheth Useful for a	er the B8ZS
F	BE	RIR1.0	Frame Bit E is received in		en a Ft (D4)	or FPS (ESF)) framing bit

RIR2: RECEIVE INFORMATION REGISTER 2 (Address=31 Hex)

(MSB)

(LSB)

RLOSC	RCLC	TESF	TESE	TSLIP	RBLC	RPDV	TPDV
SYN	IBOL P	OSITION	NAME ANI) DESCRIPT	TION		
RL	OSC	RIR2.7		ss of Sync (ion; will rema		hen the fran ead.	ner achieves
RC	CLC	RIR2.6	Receive Ca restored; will			hen the carri	er signal is
TI	ESF	RIR2.5		astic Store F nd a frame is o		n the transmit	elastic store
TI	ESE	RIR2.4		astic Store		when the tran ated.	nsmit elastic
TS	TSLIP RIR2.3			astic Store S	-	nce. Set when the sed a frame.	the transmit
TE	TBLC RIR2.2			e Alarm Cle ected; will re		the Blue Ala l read.	arm (AIS) is
RF	RPDV RIR2.1		Receive Pulse Density Violation. Set when the receive data stream does not meet the ANSI T1.403 requirements for pulse density.				
TF	PDV	RIR2.0	Transmit Pulse Density Violation. Set when the transmit data stream does not meet the ANSI T1.403 requirements for pulse density.				

SR1: STATUS REGISTER 1 (Address=20 Hex)

LUP LDN LOTC RSLIP RBL RYEL RCL RLOS	(MSB)					(LSB)
		LDN		RBL	RCL	

SYMBOL	POSITION	NAME AND DESCRIPTION
LUP	SR1.7	Loop Up Code Detected. Set when the repeating00001 loop up code is being received.
LDN	SR1.6	Loop Down Code Detected. Set when the repeating001 loop down code is being received.
LOTC	SR1.5	Loss of Transmit Clock. Set when the TCLK pin has not transitioned for one channel time (or 5.2 μ s). Will force the RLOS/LOTC pin high if enabled via CCR1.6. Also will force transmit side formatter to switch to RCLK if so enabled via TCR1.7. Based on RCLK.
RSLIP	SR1.4	Receive Elastic Store Slip Occurrence. Set when the receive elastic store has either repeated or deleted a frame.
RBL	SR1.3	Receive Blue Alarm. Set when an unframed all ones code is received at RPOS and RNEG.
RYEL	SR1.2	Receive Yellow Alarm. Set when a yellow alarm is received at RPOS and RNEG.
RCL	SR1.1	Receive Carrier Loss. Set when 192 consecutive 0s have been detected at RPOS and RNEG.
RLOS	SR1.0	Receive Loss of Sync. Set when the device is not synchronized to the receive T1 stream.