

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

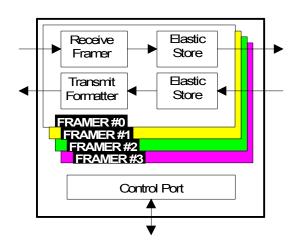
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


DS21Q42 Enhanced Quad T1 Framer

www.maxim-ic.com

FEATURES

- Four T1 DS1/ISDN-PRI/J1 framing transceivers
- All four framers are fully independent
- Each of the four framers contain dual twoframe elastic-store slip buffers that can connect to asynchronous backplanes up to 8.192MHz
- 8-bit parallel control port that can be used directly on either multiplexed or nonmultiplexed buses (Intel or Motorola)
- Programmable output clocks for Fractional T1
- Fully independent transmit and receive functionality
- Integral HDLC controller with 64-byte buffers configurable for FDL or DS0 operation
- Generates and detects in-band loop codes from
 1 to 8 bits in length including CSU loop codes
- Pin compatible with DS21Q44 E1 enhanced quad E1 framer
- 3.3V supply with 5V tolerant I/O; low-power CMOS
- Available in 128-pin TQFP package
- IEEE 1149.1 support

FUNCTIONAL DIAGRAM

ACTUAL SIZE

ORDERING INFORMATION

DS21Q42T 0°C to +70°C DS21Q42TN -40°C to +85°C

DESCRIPTION

The DS21Q42 is an enhanced version of the DS21Q41B quad T1 framer. The DS21Q42 contains four framers that are configured and read through a common microprocessor-compatible parallel port. Each framer consists of a receive framer, receive elastic store, transmit formatter, and transmit elastic store. All four framers in the DS21Q42 are totally independent; they do not share a common framing synchronizer. The transmit and receive sides of each framer are also totally independent. The dual two-frame elastic stores contained in each of the four framers can be independently enabled and disabled as required. The device fully meets all of the latest T1 specifications including ANSI T1.403-1995, ANSI T1.231-1993, AT&T TR 62411 (12–90), AT&T TR54016, and ITU G.704 and G.706.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: http://www.maxim-ic.com/errata.

1 of 116 062602

1. INTRODUCTION

The DS21Q42 is a superset version of the popular DS21Q41 quad T1 framer offering the new features listed below. All of the original features of the DS21Q41 have been retained and software created for the original device is transferable to the DS21Q42.

NEW FEATURES

- Additional hardware signaling capability including:
 - Receive signaling re-insertion to a backplane multiframe sync
 - Availability of signaling in a separate PCM data stream
 - Signaling freezing
 - Interrupt generated on change of signaling data
- Full HDLC controller with 64-byte buffers in both transmit and receive paths. Configurable for FDL or DS0 access
- Per-channel code insertion in both transmit and receive paths
- Ability to monitor one DS0 channel in both the transmit and receive paths
- RCL, RLOS, RRA, and RAIS alarms now interrupt on change of state
- Detects AIS-CI
- 8.192 MHz clock synthesizer
- Per–channel loopback
- Ability to calculate and check CRC6 according to the Japanese standard
- Ability to pass the F–Bit position through the elastic stores in the 2.048 MHz backplane mode
- IEEE 1149.1 support

FEATURES

- Four T1 DS1/ISDN–PRI/J1 framing transceivers
- All four framers are fully independent
- Frames to D4, ESF, and SLC–96 R formats
- Each of the four framers contain dual two-frame elastic store slip buffers that can connect to asynchronous backplanes up to 8.192 MHz
- 8-bit parallel control port that can be used directly on either multiplexed or non-multiplexed buses (Intel or Motorola)
- Extracts and inserts robbed bit signaling
- Detects and generates yellow (RAI) and blue (AIS) alarms
- Programmable output clocks for Fractional T1
- Fully independent transmit and receive functionality
- Generates and detects in-band loop codes from 1 to 8 bits in length including CSU loop codes
- Contains ANSI one's density monitor and enforcer
- Large path and line error counters including BPV, CV, CRC6, and framing bit errors
- Pin compatible with DS21Q44 E1 Enhanced Quad E1 Framer
- 3.3V-supply with 5V tolerant I/O; low power CMOS
- Available in 128–pin TQFP package

FUNCTIONAL DESCRIPTION

The receive side framer locates D4 (SLC-96) or ESF multiframe boundaries as well as detects incoming alarms including, carrier loss, loss of synchronization, blue (AIS) and yellow alarms. If needed, the receive side elastic store can be enabled in order to absorb the phase and frequency differences between the recovered T1 data stream and an asynchronous backplane clock which is provided at the RSYSCLK input. The clock applied at the RSYSCLK input can be either a 2.048 MHz clock or a 1.544 MHz clock. The RSYSCLK can be a burst clock with speeds up to 8.192 MHz.

The transmit side of the DS21Q42 is totally independent from the receive side in both the clock requirements and characteristics. Data off of a backplane can be passed through a transmit side elastic store if necessary. The transmit formatter will provide the necessary frame/multiframe data overhead for T1 transmission.

READER'S NOTE:

This data sheet assumes a particular nomenclature of the T1 operating environment. In each 125 us frame, there are 24 8-bit channels plus a framing bit. It is assumed that the framing bit is sent first followed by channel 1. Each channel is made up of 8 bits which are numbered 1 to 8. Bit number 1 is the MSB and is transmitted first. Bit number 8 is the LSB and is transmitted last. Throughout this data sheet, the following abbreviations will be used:

D4 Superframe (12 frames per multiframe) Multiframe Structure

SLC-96 Subscriber Loop Carrier – 96 Channels (SLC-96 is an AT&T registered trademark)

ESF Extended Superframe (24 frames per multiframe) Multiframe Structure

B8ZS Bipolar with 8 Zero Substitution CRC Cyclical Redundancy Check Ft Terminal Framing Pattern in D4 Signaling Framing Pattern in D4

FPS Framing Pattern in ESF

MF Multiframe

BOC Bit Oriented Code

HDLC High Level Data Link Control

FDL Facility Data Link

RLOS/LOTC 1 64-Byte Buffer HDLC Engine DS0 Insertion RLINK Sa Extraction RLCLK RCHBLK RCHCLK 1 **Timing Control** Signaling Buffer Signaling Extraction
SA and SI Extraction
Per-Channel Code Insert EAS Error Counter E-BIT Counter CRC Error Counter RSIG Alarm Detection BPV Counter Synchronizer RSER **RPOS** RSYSCLK Elastic RCLK RSYNC RNEG RMSYNC 1 RESYNC Remote Loopback TSYNC ► TCHBLK **Timing Control** TCHCLK1 Per-Channel Code Insert Per-Channel Loopback CRC4 Generation
Signaling Insertion
SA Insertion
E-Bit Insertion
SI Bit Insertion
SI Bit Insertion
FAS Word Insertion TPOS ◀ TSSYNC clock TSYSCLK **TNEG**◀ data Signaling Insertion **TSER** TSIG LOTC DET TCLK MUX 64-Byte Buffer **HDLC Engine** DS0 Insertion TLINK Sa Insertion FRAMER #0 FRAMER #1 FRAMER #2 8.192MHz Clock CLKS I ► 8MCLK Synthesizer JTRST* VDD $\frac{3}{7}$ JTMS **JTCLK** JTAG Port Power $vss \frac{3}{7}$ JTDI **▶** JTDO Parallel & Test Control Port (routed to all blocks) RD* BTS WR* INT* FS1 TEST CS* FS0 **ALE** A0 to A5, MUX D0 to D7 / **FMS** (R/W*) (DS*) (AS)/ Α7 AD0 to AD7 **A6**

Figure 1-1. DS21Q42 ENHANCED QUAD T1 FRAMER

Note:

1. Alternate pin functions. Consult data sheet for restrictions.

TABLE OF CONTENTS

1. INTRODUCTION	2
2. DS21Q42 PIN DESCRIPTION	8
3. DS21Q42 PIN FUNCTION DESCRIPTION	15
4. DS21Q42 REGISTER MAP	22
5. PARALLEL PORT	26
6. CONTROL, ID, AND TEST REGISTERS	26
7. STATUS AND INFORMATION REGISTERS	37
8. ERROR COUNT REGISTERS	45
9. DS0 MONITORING FUNCTION	48
10. SIGNALING OPERATION	50
10.1. PROCESSOR-BASED SIGNALING	50
10.2. HARDWARE-BASED SIGNALING	
11. PER-CHANNEL CODE (IDLE) GENERATION AND LOOPBACK	53
11.1. TRANSMIT SIDE CODE GENERATION	53
11.1.1. Simple Idle Code Insertion and Per-Channel Loopback	54
11.1.2. Per-Channel Code Insertion	55
11.2. RECEIVE SIDE CODE GENERATION	
11.2.1. Simple Code Insertion	
11.2.2. Per-Channel Code Insertion	56
12. CLOCK BLOCKING REGISTERS	57
13. ELASTIC STORES OPERATION	58
13.1. RECEIVE SIDE	
13.2. TRANSMIT SIDE	
13.3 MINIMUM DELAY SYNCHRONOUS RSYSCLK/TSYSCLK MODE	59

		D521Q12
14. HDLC CO	NTROLLER	59
14.1. HDL	C FOR DS0S	59
15. FDL/FS EX	XTRACTION AND INSERTION	60
15.1. HDL	C AND BOC CONTROLLER FOR THE FDL	60
	General Overview	
15.1.2.	Status Register for the HDLC	61
	HDLC/BOC Register Description	
	ACY FDL SUPPORT	
15.2.1.	Ov 2.1.71	71
15.2.2.	Receive Section	71
15.2.3.	Transmit Section	72
15.2.4.	D4/SLC-96 OPERATION	73
16. PROGRAN	MMABLE IN-BAND CODE GENERATION AND DETECTION	73
17 TRANSMI	T TRANSPARENCY	76
17. TKANSIMI	1 TRANSFARENCI	/0
18. INTERLEA	AVED PCM BUS OPERATION	76
19 ITAG-ROI	UNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT	79
	CRIPTION	
	CONTROLLER STATE MACHINE	
	RUCTION REGISTER AND INSTRUCTIONS	
	Γ REGISTERS	
15.11. 125		
20. TIMING D	IAGRAMS	88
21. OPERATI	NG PARAMETERS	103
11 110 DIN T	OED DACKACE SDECIEICATIONS	116

DOCUMENT REVISION HISTORY

REVISION NOTES:

DATE	NOTES		
122298	Initial Release		
	 Changed explanation on JTRST test access port pin 		
051900	 All instances of JTRST* changed to JTRST 		
	 Corrected errors in the JTAG portion of data sheet 		
062602	 Updated device characterization data 		

2. DS21Q42 PIN DESCRIPTION

Table 2-1. PIN DESCRIPTION SORTED BY PIN NUMBER

PIN	SYMBOL	TYPE	DESCRIPTION	
1	TCHBLK0	O	Transmit Channel Block from Framer 0	
2	TPOS0	O	Transmit Bipolar Data from Framer 0	
3	TNEG0	O	Transmit Bipolar Data from Framer 0	
4	RLINK0	O	Receive Link Data from Framer 0	
5	RLCLK0	O	Receive Link Clock from Framer 0	
6	RCLK0	I	Receive Clock for Framer 0	
7	RNEG0	I	Receive Bipolar Data for Framer 0	
8	RPOS0	I	Receive Bipolar Data for Framer 0	
9	RSIG0	О	Receive Signaling Output from Framer 0 [Receive Channel	
	[RCHCLK0]	[O]	Clock from Framer 0]	
10	RCHBLK0	О	Receive Channel Block from Framer 0	
11	RSYSCLK0	I	Receive System Clock for Elastic Store in Framer 0	
12	RSYNC0	I/O	Receive Sync for Framer 0	
13	RSER0	О	Receive Serial Data from Framer 0	
14	VSS		Signal Ground	
15	VDD	_	Positive Supply Voltage	
16	SPARE1	_	Reserved. Must be left unconnected for normal operation	
	[RMSYNC0]	[O]	[Receive Multiframe Sync from Framer 0]	
17	RFSYNC0	0	Receive Frame Sync from Framer 0	
18	JTRST	I [O]	JTAG Reset [Receive Loss of Sync/Loss of Transmit clock	
	[RLOS/LOTC0]		from Framer 0	
19	TCLK0	I	Transmit Clock for Framer 0	
20	TLCLK0	O	Transmit Link Clock from Framer 0	
21	TSYNC0	I/O	Transmit Sync for Framer 0	
22	TLINK0	I	Transmit Link Data for Framer 0	
23	A0	I	Address Bus Bit 0; LSB	
24	A1	I	Address Bus Bit 1	
25	A2	I	Address Bus Bit 2	
26	A3	I	Address Bus Bit 3	
27	A4	I	Address Bus Bit 4	
28	A5	I	Address Bus Bit 5	
29	A6/ALE (AS)	I	Address Bus Bit 6; MSB or Address Latch Enable (Address	
			Strobe)	
30	INT*	O	Receive Alarm Interrupt for all Four Framers	
31	TSYSCLK1	I	Transmit System Clock for Elastic Store in Framer 1	
32	TSER1	I	Transmit Serial Data for Framer 1	
33	TSSYNC1	I	Transmit Sync for Elastic Store in Framer 1	
34	TSIG1	I [O]	Transmit Signaling Input for Framer 1	
	[TCHCLK1]		[Transmit Channel Clock from Framer 1]	
35	TCHBLK1	O	Transmit Channel Block from Framer 1	
36	TPOS1	O	Transmit Bipolar Data from Framer 1	
37	TNEG1	O	Transmit Bipolar Data from Framer 1	
38	RLINK1	O	Receive Link Data from Framer 1	

PIN	SYMBOL	TYPE	DESCRIPTION	
39	RLCLK1	О	Receive Link Clock from Framer 1	
40	RCLK1	I	Receive Clock for Framer 1	
41	RNEG1	I	Receive Bipolar Data for Framer 1	
42	RPOS1	I	Receive Bipolar Data for Framer 1	
43	RSIG1	O	Receive Signaling output from Framer 1	
	[RCHCLK1]	[O]	[Receive Channel Clock from Framer 1]	
44	RCHBLK1	O	Receive Channel Block from Framer 1	
45	RSYSCLK1	I	Receive System Clock for Elastic Store in Framer 1	
46	A7	I	Address Bus Bit 7	
47	FMS	I	Framer Mode Select	
48	RSYNC1	I/O	Receive Sync for Framer 1	
49	RSER1	О	Receive Serial Data from Framer 1	
50	JTMS	I	JTAG Test Mode Select	
	[RMSYNC1]	[O]	[Receive Multiframe Sync from Framer 1]	
51	RFSYNC1	О	Receive Frame Sync from Framer 1	
52	JTCLK	I	JTAG Test Clock	
	[RLOS/LOTC1]	[O]	[Receive Loss of Sync/Loss of Transmit clock from Framer 1]	
53	TCLK1	I	Transmit Clock for Framer 1	
54	TLCLK1	О	Transmit Link Clock from Framer 1	
55	TSYNC1	I/O	Transmit Sync for Framer 1	
56	TLINK1	I	Transmit Link Data for Framer 1	
57	TEST	I	Tri-state Control for all Output and I/O Pins	
58	FS0	I	Framer Select 0 for Parallel Control Port	
59	FS1	I	Framer Select 1 for Parallel Control Port	
60	CS*	I	Chip Select	
61	BTS	I	Bus Type Select for Parallel Control Port	
62	RD*/(DS*)	I	Read Input (Data Strobe)	
63	WR*/(R/W*)	I	Write Input (Read/Write)	
64	MUX	I	Nonmultiplexed or Multiplexed Bus Select	
65	TSYSCLK2	I	Transmit System Clock for Elastic Store in Framer 2	
66	TSER2	I	Transmit Serial Data for Framer 2	
67	TSSYNC2	I	Transmit Sync for Elastic Store in Framer 2	
68	TSIG2	I	Transmit Signaling Input for Framer 2	
	[TCHCLK2]	[O]	[Transmit Channel Clock from Framer 2]	
69	TCHBLK2	0	Transmit Channel Block from Framer 2	
70	TPOS2	0	Transmit Bipolar Data from Framer 2	
71	TNEG2	0	Transmit Bipolar Data from Framer 2	
72	RLINK2	0	Receive Link Data from Framer 2	
73	RLCLK2	O	Receive Link Clock from Framer 2	
74	RCLK2	1	Receive Clock for Framer 2	
75	RNEG2	I	Receive Bipolar Data for Framer 2	
76	RPOS2	I	Receive Bipolar Data for Framer 2	
77	RSIG2	0	Receive Signaling Output from Framer 2	
70	[RCHCLK2]	[O]	[Receive Channel Clock from Framer 2]	
78	VSS		Signal Ground	
79	VDD	_	Positive Supply Voltage	
80	RCHBLK2	O	Receive Channel Block from Framer 2	

PIN	SYMBOL	TYPE	DESCRIPTION	
81	RSYSCLK2	I	Receive System Clock for Elastic Store in Framer 2	
82	RSYNC2	I/O	Receive Sync for Framer 2	
83	RSER2	О	Receive Serial Data from Framer 2	
84	JTDI	I	JTAG Test Data Input	
	[RMSYNC2]	[O]	[Receive Multiframe Sync from Framer 2]	
85	RFSYNC2	O	Receive Frame Sync from Framer 2	
86	JTDO	О	JTAG Test Data Output	
	[RLOS/LOTC2]	[O]	[Receive Loss of Sync/Loss of Transmit clock from Framer 2]	
87	TCLK2	I	Transmit Clock for Framer 2	
88	TLCLK2	О	Transmit Link Clock from Framer 2	
89	TSYNC2	I/O	Transmit Sync for Framer 2	
90	TLINK2	I	Transmit Link Data for Framer 2	
91	TSYSCLK3	I	Transmit System Clock for Elastic Store in Framer 3	
92	TSER3	I	Transmit Serial Data for Framer 3	
93	TSSYNC3	I	Transmit Sync for Elastic Store in Framer 3	
94	TSIG3	I	Transmit Signaling Input for Framer 3	
	[TCHCLK3]	[O]	[Transmit Channel Clock from Framer 3]	
95	TCHBLK3	O	Transmit Channel Block from Framer 3	
96	TPOS3	O	Transmit Bipolar Data from Framer 3	
97	TNEG3	O	Transmit Bipolar Data from Framer 3	
98	RLINK3	О	Receive Link Data from Framer 3	
99	RLCLK3	О	Receive Link Clock from Framer 3	
100	RCLK3	I	Receive Clock for Framer 3	
101	RNEG3	I	Receive Bipolar Data for Framer 3	
102	RPOS3	I	Receive Bipolar Data for Framer 3	
103	RSIG3	O	Receive Signaling Output from Framer 3	
	[RCHCLK3]	[O]	[Receive Channel Clock from Framer 3]	
104	RCHBLK3	O	Receive Channel Block from Framer 3	
105	RSYSCLK3	I	Receive System Clock for Elastic Store in Framer 3	
106	RSYNC3	I/O	Receive Sync for Framer 3	
107	RSER3	О	Receive Serial Data from Framer 3	
108	8MCLK	O	8MHz Clock	
	[RMSYNC3]	[O]	[Receive Multiframe Sync from Framer 3]	
109	RFSYNC3	O	Receive Frame Sync from Framer 3	
110	VSS		Signal Ground	
111	VDD		Positive Supply Voltage	
112	CLKSI	I	8MCLK Clock Reference Input	
	[RLOS/LOTC3]	[O]	[Receive Loss of Sync/Loss of Transmit clock from Framer 3]	
113	TCLK3	I	Transmit Clock for Framer 3	
114	TLCLK3	0	Transmit Link Clock from Framer 3	
115	TSYNC3	I/O	Transmit Sync for Framer 3	
116	TLINK3	I	Transmit Link Data for Framer 3	
117	D0 or AD0	I/O	Data Bus Bit or Address/Data Bit 0; LSB	
118	D1 or AD1	I/O	Data Bus Bit or Address/Data Bit 1	
119	D2 or AD2	I/O	Data Bus Bit or Address/Data Bit 2	
120	D3 or AD3	I/O	Data Bus Bit or Address/Data Bit 3	
121	D4 or AD4	I/O	Data Bus Bit or Address/Data Bit 4	

PIN	SYMBOL	TYPE	DESCRIPTION	
122	D5 or AD5	I/O	Data Bus Bit or Address/Data Bit 5	
123	D6 or AD6	I/O	Data Bus Bit or Address/Data Bit 6	
124	D7 or AD7	I/O	Data Bus Bit or Address/Data Bit 7; MSB	
125	TSYSCLK0	I	Transmit System Clock for Elastic Store in Framer 0	
126	TSER0	I Transmit Serial Data for Framer 0		
127	TSSYNC0	I	Transmit Sync for Elastic Store in Framer 0	
128	TSIG0	I	I Transmit Signaling Input for Framer 0	
	[TCHCLK0]	[O]	[Transmit Channel Clock from Framer 0]	

NOTE:

1) Brackets [] indicate pin function when the DS21Q42 is configured for emulation of the DS21Q41B, (FMS=1).

Table 2-2. PIN DESCRIPTION SORTED BY PIN FUNCTION, FMS = 0

PIN	SYMBOL	TYPE	DESCRIPTION	
108	8MCLK	О	8 MHz Clock	
23	A0	I	Address Bus Bit 0; LSB	
24	A1	I	Address Bus Bit 1	
25	A2	I	Address Bus Bit 2	
26	A3	I	Address Bus Bit 3	
27	A4	I	Address Bus Bit 4	
28	A5	I	Address Bus Bit 5	
29	A6/ALE (AS)	I	Address Bus Bit 6; MSB or Address Latch Enable	
			(Address Strobe)	
46	A7	I	Address Bus Bit 7	
61	BTS	I	Bus Type Select for Parallel Control Port	
112	CLKSI	I	8MCLK Clock Reference Input	
60	CS*	I	Chip Select	
117	D0 or AD0	I/O	Data Bus Bit or Address/Data Bit 0; LSB	
118	D1 or AD1	I/O	Data Bus Bit or Address/Data Bit 1	
119	D2 or AD2	I/O	Data Bus Bit or Address/Data Bit 2	
120	D3 or AD3	I/O	Data Bus Bit or Address/Data Bit 3	
121	D4 or AD4	I/O	Data Bus Bit or Address/Data Bit 4	
122	D5 or AD5	I/O	Data Bus Bit or Address/Data Bit 5	
123	D6 or AD6	I/O	Data Bus Bit or Address/Data Bit 6	
124	D7 or AD7	I/O	Data Bus Bit or Address/Data Bit 7; MSB	
47	FMS	I	Framer Mode Select	
58	FS0	I	Framer Select 0 for Parallel Control Port	
59	FS1	I	Framer Select 1 for Parallel Control Port	
30	INT*	О	Receive Alarm Interrupt for all Four Framers	
52	JTCLK	I	JTAG Test Clock	
84	JTDI	I	JTAG Test Data Input	
86	JTDO	O	JTAG Test Data Output	
50	JTMS	I	JTAG Test Mode Select	
18	JTRST	I	JTAG Reset	
64	MUX	I	Nonmultiplexed or Multiplexed Bus Select	
10	RCHBLK0	O	Receive Channel Block from Framer 0	
44	RCHBLK1	O	Receive Channel Block from Framer 1	
80	RCHBLK2	0	Receive Channel Block from Framer 2	
104	RCHBLK3	0	Receive Channel Block from Framer 3	
6	RCLK0	I	Receive Clock for Framer 0	
40	RCLK1	I	Receive Clock for Framer 1	
74	RCLK2	I	Receive Clock for Framer 2	
100	RCLK3	I	Receive Clock for Framer 3	
62	RD*/(DS*)	I	Read Input (Data Strobe)	
17	RFSYNC0	0	Receive Frame Sync from Framer 0	
51	RFSYNC1	0	Receive Frame Sync from Framer 1	
85	RFSYNC2	0	Receive Frame Sync from Framer 2	
109	RFSYNC3	0	Receive Frame Sync from Framer 3	
5	RLCLK0	O	Receive Link Clock from Framer 0	

PIN	SYMBOL	TYPE	DESCRIPTION	
39	RLCLK1	О	Receive Link Clock from Framer 1	
73	RLCLK2	О	Receive Link Clock from Framer 2	
99	RLCLK3	О	Receive Link Clock from Framer 3	
4	RLINK0	О	Receive Link Data from Framer 0	
38	RLINK1	О	Receive Link Data from Framer 1	
72	RLINK2	О	Receive Link Data from Framer 2	
98	RLINK3	О	Receive Link Data from Framer 3	
7	RNEG0	I	Receive Bipolar Data for Framer 0	
41	RNEG1	I	Receive Bipolar Data for Framer 1	
75	RNEG2	I	Receive Bipolar Data for Framer 2	
101	RNEG3	I	Receive Bipolar Data for Framer 3	
8	RPOS0	I	Receive Bipolar Data for Framer 0	
42	RPOS1	I	Receive Bipolar Data for Framer 1	
76	RPOS2	I	Receive Bipolar Data for Framer 2	
102	RPOS3	I	Receive Bipolar Data for Framer 3	
13	RSER0	O	Receive Serial Data from Framer 0	
49	RSER1	O	Receive Serial Data from Framer 1	
83	RSER2	O	Receive Serial Data from Framer 2	
107	RSER3	О	Receive Serial Data from Framer 3	
9	RSIG0	0	Receive Signaling Output from Framer 0	
43	RSIG1	O	Receive Signaling output from Framer 1	
77	RSIG2	O	Receive Signaling Output from Framer 2	
103	RSIG3	O	Receive Signaling Output from Framer 3	
12	RSYNC0	I/O	Receive Sync for Framer 0	
48	RSYNC1	I/O	Receive Sync for Framer 1	
82	RSYNC2	I/O	Receive Sync for Framer 2	
106	RSYNC3	I/O	Receive Sync for Framer 3	
11	RSYSCLK0	I	Receive System Clock for Elastic Store in Framer 0	
45	RSYSCLK1	I	Receive System Clock for Elastic Store in Framer 1	
81	RSYSCLK2	I	Receive System Clock for Elastic Store in Framer 2	
105	RSYSCLK3	I	Receive System Clock for Elastic Store in Framer 3	
16	SPARE1	<u> </u>	Reserved. Must be left unconnected for normal operation	
25	TCHBLK0	0	Transmit Channel Block from Framer 0	
35	TCHBLK1	0	Transmit Channel Block from Framer 1	
69	TCHBLK2	0	Transmit Channel Block from Framer 2	
95 19	TCHBLK3	O	Transmit Channel Block from Framer 3	
	TCLK0 TCLK1	I	Transmit Clock for Framer 0	
53 87		I	Transmit Clock for Framer 1	
	TCLK2	1 T	Transmit Clock for Framer 2	
113 57	TCLK3 TEST	I	Transmit Clock for Framer 3 Triestate Control for all Output and I/O Pins	
20	TLCLK0	0	Tri-state Control for all Output and I/O Pins Transmit Link Clock from Framer 0	
54	TLCLK0	0	Transmit Link Clock from Framer 0 Transmit Link Clock from Framer 1	
88	TLCLK1 TLCLK2	0		
114	TLCLK2 TLCLK3	0	Transmit Link Clock from Framer 2 Transmit Link Clock from Framer 3	
22	TLINK0	I	Transmit Link Clock from Framer 3 Transmit Link Data for Framer 0	
56	TLINK0 TLINK1	I	Transmit Link Data for Framer 1	
30	LUNKI	1	Transmit Link Data for Framer 1	

PIN	SYMBOL	TYPE	DESCRIPTION	
90	TLINK2	I	Transmit Link Data for Framer 2	
116	TLINK3	I	Transmit Link Data for Framer 3	
3	TNEG0	0	Transmit Bipolar Data from Framer 0	
37	TNEG1	0	Transmit Bipolar Data from Framer 1	
71	TNEG2	О	Transmit Bipolar Data from Framer 2	
97	TNEG3	О	Transmit Bipolar Data from Framer 3	
2	TPOS0	О	Transmit Bipolar Data from Framer 0	
36	TPOS1	О	Transmit Bipolar Data from Framer 1	
70	TPOS2	О	Transmit Bipolar Data from Framer 2	
96	TPOS3	O	Transmit Bipolar Data from Framer 3	
126	TSER0	I	Transmit Serial Data for Framer 0	
32	TSER1	I	Transmit Serial Data for Framer 1	
66	TSER2	I	Transmit Serial Data for Framer 2	
92	TSER3	I	Transmit Serial Data for Framer 3	
128	TSIG0	I	Transmit Signaling Input for Framer 0	
34	TSIG1	I	Transmit Signaling Input for Framer 1	
68	TSIG2	I	Transmit Signaling Input for Framer 2	
94	TSIG3	I	Transmit Signaling Input for Framer 3	
127	TSSYNC0	I	Transmit Sync for Elastic Store in Framer 0	
33	TSSYNC1	I	Transmit Sync for Elastic Store in Framer 1	
67	TSSYNC2	I	Transmit Sync for Elastic Store in Framer 2	
93	TSSYNC3	I	Transmit Sync for Elastic Store in Framer 3	
21	TSYNC0	I/O	Transmit Sync for Framer 0	
55	TSYNC1	I/O	Transmit Sync for Framer 1	
89	TSYNC2	I/O	Transmit Sync for Framer 2	
115	TSYNC3	I/O	Transmit Sync for Framer 3	
125	TSYSCLK0	I	Transmit System Clock for Elastic Store in Framer 0	
31	TSYSCLK1	I	Transmit System Clock for Elastic Store in Framer 1	
65	TSYSCLK2	I	Transmit System Clock for Elastic Store in Framer 2	
91	TSYSCLK3	I	Transmit System Clock for Elastic Store in Framer 3	
15	VDD		Positive Supply Voltage	
79	VDD		Positive Supply Voltage	
111	VDD		Positive Supply Voltage	
14	VSS		Signal Ground	
78	VSS		Signal Ground	
110	VSS		Signal Ground	
63	WR*/(R/W*)	I	Write Input (Read/Write)	

3. DS21Q42 PIN FUNCTION DESCRIPTION

TRANSMIT SIDE PINS

Signal Name: TCLK

Signal Description: Transmit Clock

Signal Type: Input

A 1.544 MHz primary clock. Used to clock data through the transmit side formatter.

Signal Name: TSER

Signal Description: Transmit Serial Data

Signal Type: Input

Transmit NRZ serial data. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.

Signal Name: TCHCLK

Signal Description: Transmit Channel Clock

Signal Type: Output

A 192 kHz clock which pulses high during the LSB of each channel. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q41 emulation).

Signal Name: TCHBLK

Signal Description: Transmit Channel Block

Signal Type: Output

A user programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used such as Fractional T1, 384 Kbps service, 768 Kbps or ISDN–PRI . Also useful for locating individual channels in drop–and–insert applications, for external per–channel loopback, and for per–channel conditioning. See Section 12 for details.

Signal Name: TSYSCLK

Signal Description: Transmit System Clock

Signal Type: Input

1.544 MHz or 2.048 MHz clock. Only used when the transmit side elastic store function is enabled. Should be tied low in applications that do not use the transmit side elastic store. Can be burst at rates up to 8.192 MHz.

Signal Name: TLCLK

Signal Description: Transmit Link Clock

Signal Type: **Output**

4 kHz or 2 kHz (ZBTSI) demand clock for the TLINK input. See Section 15 for details.

Signal Name: TLINK

Signal Description: Transmit Link Data

Signal Type: Input

If enabled via TCR1.2, this pin will be sampled on the falling edge of TCLK for data insertion into either the FDL stream (ESF) or the Fs-bit position (D4) or the Z-bit position (ZBTSI). See Section 15 for details.

Signal Name: TSYNC

Signal Description: **Transmit Sync** Signal Type: **Input /Output**

A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Via TCR2.2, the DS21Q42 can be programmed to output either a frame or multiframe pulse at this pin. If this pin is set to output pulses at frame boundaries, it can also be set via TCR2.4 to output double—wide pulses at signaling frames. See Section 20 for details.

Signal Name: TSSYNC

Signal Description: Transmit System Sync

Signal Type: Input

Only used when the transmit side elastic store is enabled. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Should be tied low in applications that do not use the transmit side elastic store.

Signal Name: TSIG

Signal Description: Transmit Signaling Input

Signal Type: Input

When enabled, this input will sample signaling bits for insertion into outgoing PCM T1 data stream. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled. This function is available when FMS = 0.

Signal Name: **TPOS**

Signal Description: Transmit Positive Data Output

Signal Type: **Output**

Updated on the rising edge of TCLK with the bipolar data out of the transmit side formatter. Can be programmed to source NRZ data via the Output Data Format (CCR1.6) control bit.

Signal Name: TNEG

Signal Description: Transmit Negative Data Output

Signal Type: Output

Updated on the rising edge of TCLK with the bipolar data out of the transmit side formatter.

RECEIVE SIDE PINS

Signal Name: **RLINK**

Signal Description: Receive Link Data

Signal Type: Output

Updated with either FDL data (ESF) or Fs bits (D4) or Z bits (ZBTSI) one RCLK before the start of a

frame. See Section 20 for details.

Signal Name: **RLCLK**

Signal Description: Receive Link Clock

Signal Type: Output

A 4 kHz or 2 kHz (ZBTSI) clock for the RLINK output.

Signal Name: RCHCLK

Signal Description: Receive Channel Clock

Signal Type: Output

A 192 kHz clock which pulses high during the LSB of each channel. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q41 emulation).

Signal Name: RCHBLK

Signal Description: Receive Channel Block

Signal Type: Output

A user programmable output that can be forced high or low during any of the 24 T1 channels. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all T1 channels are used such as Fractional T1, 384K bps service, 768K bps, or ISDN–PRI. Also useful for locating individual channels in drop—and—insert applications, for external per—channel loopback, and for per—channel conditioning. See Section 12 for details.

Signal Name: **RSER**

Signal Description: Receive Serial Data

Signal Type: Output

Received NRZ serial data. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled.

Signal Name: **RSYNC**

Signal Description: Receive Sync Signal Type: Input /Output

An extracted pulse, one RCLK wide, is output at this pin which identifies either frame (RCR2.4 = 0) or multiframe (RCR2.4 = 1) boundaries. If set to output frame boundaries then via RCR2.5, RSYNC can also be set to output double—wide pulses on signaling frames. If the receive side elastic store is enabled via CCR1.2, then this pin can be enabled to be an input via RCR2.3 at which a frame or multiframe boundary pulse is applied. See Section 20 for details.

Signal Name: **RFSYNC**

Signal Description: Receive Frame Sync

Signal Type: Output

An extracted 8 kHz pulse, one RCLK wide, is output at this pin which identifies frame boundaries.

Signal Name: RMSYNC

Signal Description: Receive Multiframe Sync

Signal Type: **Output**

An extracted pulse, one RSYSCLK wide, is output at this pin which identifies multiframe boundaries. If the receive side elastic store is disabled, then this output will output multiframe boundaries associated with RCLK. This function is available when FMS = 1 (DS21Q41 emulation).

Signal Name: **RSYSCLK**

Signal Description: Receive System Clock

Signal Type: Input

1.544 MHz or 2.048 MHz clock. Only used when the elastic store function is enabled. Should be tied low in applications that do not use the elastic store. Can be burst at rates up to 8.192 MHz.

Signal Name: RSIG

Signal Description: Receive Signaling Output

Signal Type: **Output**

Outputs signaling bits in a PCM format. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled. This function is available when FMS = 0.

Signal Name: RLOS/LOTC

Signal Description: Receive Loss of Sync / Loss of Transmit Clock

Signal Type: Output

A dual function output that is controlled by the CCR3.5 control bit. This pin can be programmed to either toggle high when the synchronizer is searching for the frame and multiframe or to toggle high if the TCLK pin has not been toggled for 5 usec. This function is available when FMS = 1 (DS21Q41 emulation).

Signal Name: CLKSI

Signal Description: 8 MHz Clock Reference

Signal Type: Input

A 1.544 MHz reference clock used in the generation of 8MCLK. This function is available when

FMS = 0.

Signal Name: 8MCLK

Signal Description: 8 MHz Clock

Signal Type: Output

A 8.192 MHz output clock that is referenced to the clock that is input at the CLKSI pin. This function is

available when FMS = 0.

Signal Name: **RPOS**

Signal Description: Receive Positive Data Input

Signal Type: Input

Sampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS and RNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolar violation monitoring circuitry.

Signal Name: RNEG

Signal Description: Receive Negative Data Input

Signal Type: Input

Sampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS and RNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolar violation monitoring circuitry.

Signal Name: RCLK

Signal Description: Receive Clock Input

Signal Type: Input

Clock used to clock data through the receive side framer.

PARALLEL CONTROL PORT PINS

Signal Name: INT*

Signal Description: Interrupt

Signal Type: Output

Flags host controller during conditions and change of conditions defined in the Status Registers 1 and 2 and the HDLC Status Register. Active low, open drain output.

Signal Name: FMS

Signal Description: Framer Mode Select

Signal Type: Input

Set low to select DS21Q42 feature set. Set high to select DS21Q41 emulation.

Signal Name: MUX

Signal Description: Bus Operation

Signal Type: Input

Set low to select non-multiplexed bus operation. Set high to select multiplexed bus operation.

Signal Name: **D0 to D7/ AD0 to AD7**

Signal Description: Data Bus or Address/Data Bus

Signal Type: Input /Output

In non-multiplexed bus operation (MUX = 0), serves as the data bus. In multiplexed bus operation (MUX = 1), serves as a 8-bit multiplexed address / data bus.

Signal Name: **A0 to A5, A7**Signal Description: **Address Bus**

Signal Type: **Input**

In non-multiplexed bus operation (MUX = 0), serves as the address bus. In multiplexed bus operation (MUX = 1), these pins are not used and should be tied low.

Signal Name: ALE(AS)/A6

Signal Description: A6 or Address Latch Enable (Address Strobe)

Signal Type: Input

In non-multiplexed bus operation (MUX = 0), serves as address bit 6. In multiplexed bus operation (MUX = 1), serves to demultiplex the bus on a positive-going edge.

Signal Name: **BTS**

Signal Description: Bus Type Select

Signal Type: Input

Strap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls the function of the RD*(DS*), ALE(AS), and WR*(R/W*) pins. If BTS = 1, then these pins assume the function listed in parenthesis ().

Signal Name: **RD*(DS*)**

Signal Description: Read Input (Data Strobe)

Signal Type: Input

RD* and DS* are active low signals. Note: DS is active high when MUX=1. Refer to bus timing

diagrams in section 21.

Signal Name: FS0 AND FS1
Signal Description: Framer Selects

Signal Type: Input

Selects which of the four framers to be accessed.

Signal Name: CS*

Signal Description: Chip Select

Signal Type: Input

Must be low to read or write to the device. CS* is an active low signal.

Signal Name: WR*(R/W*)

Signal Description: Write Input(Read/Write)

Signal Type: Input

WR* is an active low signal.

TEST ACCESS PORT PINS

Signal Name: **TEST**

Signal Description: 3-State Control

Signal Type: Input

Set high to 3-state all output and I/O pins (including the parallel control port) when FMS = 1 or when FMS = 0 and JTRST is tied low. Set low for normal operation. Ignored when FMS = 0 and JTRST = 1. Useful in board level testing.

Signal Name: JTRST

Signal Description: IEEE 1149.1 Test Reset

Signal Type: **Input**

If FMS = 1: JTAG functionality is not available and JTRST is held LOW internally. If FMS = 0: JTAG functionality is available and JTRST is pulled up internally by a 10-kilo ohm resistor. If FMS = 0, and boundary scan is not used this pin should be held low. This signal is used to asynchronously reset the test access port controller. The device enters the DEVICE ID MODE when JTRST is pulled high. The device operates as a T1/E1 transceiver if JTRST is pulled low.

Signal Name: JTMS

Signal Description: IEEE 1149.1 Test Mode Select

Signal Type: Input

This pin is sampled on the rising edge of JTCLK and is used to place the test port into the various defined IEEE 1149.1 states. This pin is pulled up internally by a 10-kilo ohm resistor. If not used, this pin should be left unconnected. This function is available when FMS = 0.

Signal Name: **JTCLK**

Signal Description: IEEE 1149.1 Test Clock Signal

Signal Type: Input

This signal is used to shift data into JTDI pin on the rising edge and out of JTDO pin on the falling edge.

If not used, this pin should be connected to VSS. This function is available when FMS = 0.

Signal Name: JTDI

Signal Description: IEEE 1149.1 Test Data Input

Signal Type: Input

Test instructions and data are clocked into this pin on the rising edge of JTCLK. This pin is pulled up internally by a 10-kilo ohm resistor. If not used, this pin should be left unconnected. This function is available when FMS = 0.

Signal Name: JTDO

Signal Description: IEEE 1149.1 Test Data Output

Signal Type: Output

Test instructions and data are clocked out of this pin on the falling edge of JTCLK. If not used, this pin should be left unconnected. This function is available when FMS = 0.

SUPPLY PINS

Signal Name: VDD

Signal Description: Positive Supply

Signal Type: **Supply** 2.97 to 3.63 volts.

Signal Name: VSS

Signal Description: Signal Ground

Signal Type: Supply

0.0 volts.

4. DS21Q42 REGISTER MAP

Table 4-1. REGISTER MAP SORTED BY ADDRESS

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
00	R/W	HDLC Control	HCR
01	R/W	HDLC Status	HSR
02	R/W	HDLC Interrupt Mask	HIMR
03	R/W	Receive HDLC Information	RHIR
04	R/W	Receive Bit Oriented Code	RBOC
05	R	Receive HDLC FIFO	RHFR
06	R/W	Transmit HDLC Information	THIR
07	R/W	Transmit Bit Oriented Code	TBOC
08	W	Transmit HDLC FIFO	THFR
09		Not used	(set to 00H)
0A	R/W	Common Control 7	CCR7
0B		Not used	(set to 00H)
0C	_	Not used	(set to 00H)
0D	—	Not used	(set to 00H)
0E	—	Not used	(set to 00H)
0F	R	Device ID	IDR
10	R/W	Receive Information 3	RIR3
11	R/W	Common Control 4	CCR4
12	R/W	In–Band Code Control	IBCC
13	R/W	Transmit Code Definition	TCD
14	R/W	Receive Up Code Definition	RUPCD
15	R/W	Receive Down Code Definition	RDNCD
16	R/W	Transmit Channel Control 1	TCC1
17	R/W	Transmit Channel Control 2	TCC2
18	R/W	Transmit Channel Control 3	TCC3
19	R/W	Common Control 5	CCR5
1A	R	Transmit DS0 Monitor	TDS0M
1B	R/W	Receive Channel Control 1	RCC1
1C	R/W	Receive Channel Control 2	RCC2
1D	R/W	Receive Channel Control 3	RCC3
1E	R/W	Common Control 6	CCR6
1F	R	Receive DS0 Monitor	RDS0M
20	R/W	Status 1	SR1
21	R/W	Status 2	SR2
22	R/W	Receive Information 1	RIR1
23	R	Line Code Violation Count 1	LCVCR1
24	R	Line Code Violation Count 2	CVCR2
25	R	Path Code Violation Count 1	PCVCR1
26	R	Path Code violation Count 2	PCVCR2
27	R	Multiframe Out of Sync Count 2	MOSCR2
28	R	Receive FDL Register	RFDL
29	R/W	Receive FDL Match 1	RMTCH1

			DECICTED
ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
2A	R/W	Receive FDL Match 2	RMTCH2
2B	R/W	Receive Control 1	RCR1
2C	R/W	Receive Control 2	RCR2
2D	R/W	Receive Mark 1	RMR1
2E	R/W	Receive Mark 2	RMR2
2F	R/W	Receive Mark 3	RMR3
30	R/W	Common Control 3	CCR3
31	R/W	Receive Information 2	RIR2
32	R/W	Transmit Channel Blocking 1	TCBR1
33	R/W	Transmit Channel blocking 2	TCBR2
34	R/W	Transmit Channel Blocking 3	TCBR3
35	R/W	Transmit Control 1	TCR1
36	R/W	Transmit Control 2	TCR2
37	R/W	Common Control 1	CCR1
38	R/W	Common Control 2	CCR2
39	R/W	Transmit Transparency 1	TTR1
3A	R/W	Transmit Transparency 2	TTR2
3B	R/W	Transmit Transparency 3	TTR3
3C	R/W	Transmit Idle 1	TIR1
3D	R/W	Transmit Idle 2	TIR2
3E	R/W	Transmit Idle 3	TIR3
3F	R/W	Transmit Idle Definition	TIDR
40	R/W	Transmit Channel 9	TC9
41	R/W	Transmit Channel 10	TC10
42	R/W	Transmit Channel 11	TC11
43	R/W	Transmit Channel 12	TC12
44	R/W	Transmit Channel 13	TC13
45	R/W	Transmit Channel 14	TC14
46	R/W	Transmit Channel 15	TC15
47	R/W	Transmit Channel 16	TC16
48	R/W	Transmit Channel 17	TC17
49	R/W	Transmit Channel 18	TC18
4A	R/W	Transmit Channel 19	TC19
4B	R/W	Transmit Channel 20	TC20
4C	R/W	Transmit Channel 21	TC21
4D	R/W	Transmit Channel 22	TC22
4E	R/W	Transmit Channel 23	TC23
4F	R/W	Transmit Channel 24	TC24
50	R/W	Transmit Channel 1	TC1
51	R/W	Transmit Channel 2	TC2
52	R/W	Transmit Channel 3	TC3
53	R/W	Transmit Channel 4	TC4
54	R/W	Transmit Channel 5	TC5
55	R/W	Transmit Channel 6	TC6
56	R/W	Transmit Channel 7	TC7
57	R/W	Transmit Channel 8	TC8
J 1	T/ //	Transmit Chamer 0	100

			DS21Q42
ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
58	R/W	Receive Channel 17	RC17
59	R/W	Receive Channel 18	RC18
5A	R/W	Receive Channel 19	RC19
5B	R/W	Receive Channel 20	RC20
5C	R/W	Receive Channel 21	RC21
5D	R/W	Receive Channel 22	RC22
5E	R/W	Receive Channel 23	RC23
5F	R/W	Receive Channel 24	RC24
60	R	Receive Signaling 1	RS1
61	R	Receive Signaling 2	RS2
62	R	Receive Signaling 3	RS3
63	R	Receive Signaling 4	RS4
64	R	Receive Signaling 5	RS5
65	R	Receive Signaling 6	RS6
66	R	Receive Signaling 7	RS7
67	R	Receive Signaling 8	RS8
68	R	Receive Signaling 9	RS9
69	R	Receive Signaling 10	RS10
6A	R	Receive Signaling 11	RS11
6B	R	Receive Signaling 12	RS12
6C	R/W	Receive Channel Blocking 1	RCBR1
6D	R/W	Receive Channel Blocking 2	RCBR2
6E	R/W	Receive Channel Blocking 3	RCBR3
6F	R/W	Interrupt Mask 2	IMR2
70	R/W	Transmit Signaling 1	TS1
71	R/W	Transmit Signaling 2	TS2
72	R/W	Transmit Signaling 3	TS3
73	R/W	Transmit Signaling 4	TS4
74	R/W	Transmit Signaling 5	TS5
75	R/W	Transmit Signaling 6	TS6
76	R/W	Transmit Signaling 7	TS7
77	R/W	Transmit Signaling 8	TS8
78	R/W	Transmit Signaling 9	TS9
79	R/W	Transmit Signaling 10	TS10
7A	R/W	Transmit Signaling 11	TS11
7B	R/W	Transmit Signaling 12	TS12
7C		Not used	(set to 00H)
7D	R/W	Test 1	TEST1 (set to 00h)
7E	R/W	Transmit FDL Register	TFDL
7F	R/W	Interrupt Mask Register 1	IMR1
80	R/W	Receive Channel 1	RC1
81	R/W	Receive Channel 2	RC2
82	R/W	Receive Channel 3	RC3
83	R/W	Receive Channel 4	RC4
84	R/W	Receive Channel 5	RC5
85	R/W	Receive Channel 6	RC6

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
86	R/W	Receive Channel 7	RC7
87	R/W	Receive Channel 8	RC8
88	R/W	Receive Channel 9	RC9
89	R/W	Receive Channel 10	RC10
8A	R/W	Receive Channel 11	RC11
8B	R/W	Receive Channel 12	RC12
8C	R/W	Receive Channel 13	RC13
8D	R/W	Receive Channel 14	RC14
8E	R/W	Receive Channel 15	RC15
8F	R/W	Receive Channel 16	RC16
90	R/W	Receive HDLC DS0 Control Register 1	RDC1
91	R/W	Receive HDLC DS0 Control Register 2	RDC2
92	R/W	Transmit HDLC DS0 Control Register 1	TDC1
93	R/W	Transmit HDLC DS0 Control Register 2	TDC2
94	R/W	Interleave Bus Operation Register	IBO
95	_	Not used	(set to 00H)
96	R/W	Test 2	TEST2 (set to 00h)
97	_	Not used	(set to 00H)
98		Not used	(set to 00H)
99	_	Not used	(set to 00H)
9A	_	Not used	(set to 00H)
9B	_	Not used (set to 00H)	
9C		Not used (set to 00H)	
9D	_	Not used (set to 00H)	
9E		Not used (set to 00H)	
9F		Not used (set to 00H)	

NOTES:

- 1) Test Registers 1 and 2 are used only by the factory; these registers must be cleared (set to all zeros) on power—up initialization to insure proper operation.
- 2) Register banks AxH, BxH, CxH, DxH, ExH, and FxH are not accessible.