imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DALLAS JUINKIN

DS21Q44 Enhanced Quad E1 Framer

www.maxim-ic.com

FEATURES

- Four E1 (CEPT or PCM-30)/ISDN-PRI framing transceivers
- All four framers are fully independent; transmit and receive sections of each framer are fully independent
- Frames to FAS, CAS, CCS, and CRC4 formats
- Each of the four framers contain dual twoframe elastic store slip buffers that can connect to asynchronous backplanes up to 8.192MHz
- 8-bit parallel control port that can be used directly on either multiplexed or nonmultiplexed buses (Intel or Motorola)
- Easy access to Si and Sa bits
- Extracts and inserts CAS signaling
- Large counters for bipolar and code violations, CRC4 code word errors, FAS word errors, and E-bits
- Programmable output clocks for Fractional E1, per channel loopback, H0 and H12 applications
- Integral HDLC controller with 64-byte buffers configurable for Sa bits or DS0 operation
- Detects and generates AIS, remote alarm, and remote multiframe alarms
- Pin compatible with DS21Q42 enhanced quad T1 framer
- 3.3V supply with 5V tolerant I/O; low-power CMOS
- Available in 128-pin TQFP package
- IEEE 1149.1 support

DESCRIPTION

The DS21Q44 E1 is an enhanced version of the DS21Q43 quad E1 framer. The DS21Q44 contains four framers that are configured and read through a common microprocessor-compatible parallel port. Each framer consists of a receive framer, receive elastic store, transmit formatter, and transmit elastic store. All four framers in the DS21Q44 are totally independent; they do not share a common framing synchronizer. The transmit and receive sides of each framer are also totally independent. The dual two-frame elastic stores contained in each of the four framers can be independently enabled and disabled as required. The

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: <u>www.maxim-ic.com/errata</u>.

FUNCTIONAL DIAGRAM

ACTUAL SIZE

ORDERING INFORMATION

DS21Q44T	
DS21Q44TN	

0°C to +70°C -40°C to +85°C device fully meets all of the latest E1 specifications including CCITT/ITU G.704, G.706, G.962, and I.431 as well as ETS 300 011 and ETS 300 233.

1. INTRODUCTION

The DS21Q44 is a superset version of the popular DS21Q43 quad E1 framer offering the new features listed below. All of the original features of the DS21Q43 have been retained and software created for the original device is transferable to the DS21Q44.

NEW FEATURES

- Additional hardware signaling capability including:
 - receive signaling reinsertion to a backplane multiframe sync
 - availability of signaling in a separate PCM data stream
 - signaling freezing
 - interrupt generated on change of signaling data
- Per-channel code insertion in both transmit and receive paths
- Full HDLC controller with 64-byte buffers in both transmit and receive paths. Configurable for Sa bits or DS0 access
- RCL, RLOS, RRA, and RUA1 alarms now interrupt on change of state
- 8.192MHz clock synthesizer
- Ability to monitor one DS0 channel in both the transmit and receive paths
- Option to extend carrier loss criteria to a 1 ms period as per ETS 300 233
- Automatic RAI generation to ETS 300 011 specifications
- IEEE 1149.1 support

FUNCTIONAL DESCRIPTION

The receive side in each framer locates FAS frame and CRC and CAS multiframe boundaries as well as detects incoming alarms including, carrier loss, loss of synchronization, AIS and Remote Alarm. If needed, the receive side elastic store can be enabled in order to absorb the phase and frequency differences between the recovered E1 data stream and an asynchronous backplane clock which is provided at the RSYSCLK input. The clock applied at the RSYSCLK input can be either a 2.048 MHz clock or a 1.544 MHz clock. The RSYSCLK can be a burst clock with speeds up to 8.192 MHz.

The transmit side in each framer is totally independent from the receive side in both the clock requirements and characteristics. Data off of a backplane can be passed through a transmit side elastic store if necessary. The transmit formatter will provide the necessary frame/multiframe data overhead for E1 transmission.

READER'S NOTE:

This data sheet assumes a particular nomenclature of the E1 operating environment. In each 125 us frame, there are 32 8-bit timeslots numbered 0 to 31. Timeslot 0 is transmitted first and received first. These 32 timeslots are also referred to as channels with a numbering scheme of 1 to 32. Timeslot 0 is identical to channel 1, timeslot 1 is identical to Channel 2, and so on. Each timeslot (or channel) is made up of 8 bits which are numbered 1 to 8. Bit number 1 is the MSB and is transmitted first. Bit number 8 is the LSB and is transmitted last. Throughout this data sheet, the following abbreviations will be used:

FAS	Frame Alignment Signal	CRC4	Cyclical Redundancy Check
CAS	Channel Associated Signaling	CCS	Common Channel Signaling
MF	Multiframe	Sa	Additional bits
Si	International bits	E-bit	CRC4 Error Bits

Figure 1-1. DS21Q44 ENHANCED QUAD E1 FRAMER

1. Alternate pin functions. Consult data sheet for restrictions.

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	DS21Q44 PIN DESCRIPTION	7
3.	DS21Q44 PIN FUNCTION DESCRIPTION	13
4.	DS21Q44 REGISTER MAP	20
5.	PARALLEL PORT	24
6.	CONTROL, ID, AND TEST REGISTERS	24
7.	STATUS AND INFORMATION REGISTERS	35
8.	ERROR COUNT REGISTERS	41
9.	DS0 MONITORING FUNCTION	44
10.	SIGNALING OPERATION	46
	10.1 PROCESSOR-BASED SIGNALING10.2 HARDWARE-BASED SIGNALING	46 49
11.	. PER-CHANNEL CODE GENERATION AND LOOPBACK	50
	11.1 TRANSMIT SIDE CODE GENERATION	50
	11.1.1 Simple Idle Code Insertion and Per-Channel Loopback	
	11.1.2 Per-Channel Code Insertion	51
	11.2 RECEIVE SIDE CODE GENERATION	52
12.	. CLOCK BLOCKING REGISTERS	53
13	ELASTIC STORES OPERATION	54
	13.1 RECEIVE SIDE	55
	13.2 TRANSMIT SIDE	55
14	ADDITIONAL (SA) AND INTERNATIONAL (SI) BIT OPERATION	55
	14.1 HARDWARE SCHEME	55
	14.2 INTERNAL REGISTER SCHEME BASED ON DOUBLE-FRAME	56
	14.3 INTERNAL REGISTER SCHEME BASED ON CRC4 MULTIFRAME	58

15. HDLC CONTROLLER FOR THE SA BITS OR DS0	60
15.1 GENERAL OVERVIEW	60
15.2 HDLC STATUS REGISTERS	61
15.3 BASIC OPERATION DETAILS	62
15.4 HDLC REGISTER DESCRIPTION	
16. INTERLEAVED PCM BUS OPERATION	70
17. JTAG-BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT	
17.1 DESCRIPTION	73
17.2 TAP CONTROLLER STATE MACHINE	74
17.3 INSTRUCTION REGISTER AND INSTRUCTIONS	76
17.4 TEST REGISTERS	
18. TIMING DIAGRAMS	82
19. OPERATING PARAMETERS	
20. 128-PIN TQFP PACKAGE SPECIFICATIONS	

DOCUMENT REVISION HISTORY

REVISION NOTES:

DATE	NOTES		
122298	nitial Release		
	 Changed explanation on JTRST test access port pin. 		
052300	 All instances of JTRST* changed to JTRST. 		
	 Corrected errors in the JTAG portion of data sheet. 		
062602	 Updated device characterization data 		

Table 2-1. PIN DESCRIPTION SORTED BY PIN NUMBER

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
1	TCHBLK0	0	Transmit Channel Block from Framer 0
2	TPOS0	0	Transmit Bipolar Data from Framer 0
3	TNEG0	0	Transmit Bipolar Data from Framer 0
4	RLINK0	0	Receive Link Data from Framer 0
5	RLCLK0	0	Receive Link Clock from Framer 0
6	RCLK0	Ι	Receive Clock for Framer 0
7	RNEG0	Ι	Receive Bipolar Data for Framer 0
8	RPOS0	Ι	Receive Bipolar Data for Framer 0
9	RSIG0	0	Receive Signaling Output from Framer 0
	[RCHCLK0]	[0]	[Receive Channel Clock from Framer 0]
10	RCHBLK0	0	Receive Channel Block from Framer 0
11	RSYSCLK0	Ι	Receive System Clock for Elastic Store in Framer 0
12	RSYNC0	I/O	Receive Sync for Framer 0
13	RSER0	0	Receive Serial Data from Framer 0
14	VSS		Signal Ground
15	VDD		Positive Supply Voltage
16	SPARE1		<i>Reserved.</i> Must be left unconnected for normal operation
	[RMSYNC0]	[0]	[Receive Multiframe Sync from Framer 0]
17	RFSYNC0	0	Receive Frame Sync from Framer 0
18	JTRST	Ι	JTAG Reset
	[RLOS/LOTC0]	[O]	[Receive Loss of Sync/Loss of Transmit clock from Framer 0]
19	TCLK0	Ι	Transmit Clock for Framer 0
20	TLCLK0	0	Transmit Link Clock from Framer 0
21	TSYNC0	I/O	Transmit Sync for Framer 0
22	TLINK0	Ι	Transmit Link Data for Framer 0
23	A0	Ι	Address Bus Bit 0; LSB
24	A1	Ι	Address Bus Bit 1
25	A2	Ι	Address Bus Bit 2
26	A3	Ι	Address Bus Bit 3
27	A4	Ι	Address Bus Bit 4
28	A5	Ι	Address Bus Bit 5
29	A6/ALE (AS)	Ι	Address Bus Bit 6; MSB or Address Latch Enable (Address
			Strobe)
30	INT*	0	Receive Alarm Interrupt for all Four Framers
31	TSYSCLK1	Ι	Transmit System Clock for Elastic Store in Framer 1
32	TSER1	Ι	Transmit Serial Data for Framer 1
33	TSSYNC1	Ι	Transmit Sync for Elastic Store in Framer 1
34	TSIG1	Ι	Transmit Signaling Input for Framer 1
	[TCHCLK1]	[0]	[Transmit Channel Clock from Framer 1]
35	TCHBLK1	0	Transmit Channel Block from Framer 1
36	TPOS1	0	Transmit Bipolar Data from Framer 1
37	TNEG1	0	Transmit Bipolar Data from Framer 1
38	RLINK1	0	Receive Link Data from Framer 1

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
39	RLCLK1	0	Receive Link Clock from Framer 1
40	RCLK1	Ι	Receive Clock for Framer 1
41	RNEG1	Ι	Receive Bipolar Data for Framer 1
42	RPOS1	Ι	Receive Bipolar Data for Framer 1
43	RSIG1	0	Receive Signaling output from Framer 1
	[RCHCLK1]	[O]	[Receive Channel Clock from Framer 1]
44	RCHBLK1	0	Receive Channel Block from Framer 1
45	RSYSCLK1	Ι	Receive System Clock for Elastic Store in Framer 1
46	A7	Ι	Address Bus Bit 7
47	FMS	Ι	Framer Mode Select
48	RSYNC1	I/O	Receive Sync for Framer 1
49	RSER1	0	Receive Serial Data from Framer 1
50	JTMS	Ι	JTAG Test Mode Select
	[RMSYNC1]	[0]	[Receive Multiframe Sync from Framer 1]
51	RFSYNC1	0	Receive Frame Sync from Framer 1
52	JTCLK	Ι	JTAG Test Clock
	[RLOS/LOTC1]	[0]	[Receive Loss of Sync/Loss of Transmit clock from Framer 1]
53	TCLK1	Ι	Transmit Clock for Framer 1
54	TLCLK1	0	Transmit Link Clock from Framer 1
55	TSYNC1	I/O	Transmit Sync for Framer 1
56	TLINK1	Ι	Transmit Link Data for Framer 1
57	TEST	Ι	Tri-state Control for all Output and I/O Pins
58	FS0	Ι	Framer Select 0 for Parallel Control Port
59	FS1	Ι	Framer Select 1 for Parallel Control Port
60	CS*	Ι	Chip Select
61	BTS	Ι	Bus Type Select for Parallel Control Port
62	RD*/(DS*)	Ι	Read Input (Data Strobe)
63	WR*/(R/W*)	Ι	Write Input (Read/Write)
64	MUX	Ι	Nonmultiplexed or Multiplexed Bus Select
65	TSYSCLK2	Ι	Transmit System Clock for Elastic Store in Framer 2
66	TSER2	Ι	Transmit Serial Data for Framer 2
67	TSSYNC2	Ι	Transmit Sync for Elastic Store in Framer 2
68	TSIG2	Ι	Transmit Signaling Input for Framer 2
	[TCHCLK2]	[0]	[Transmit Channel Clock from Framer 2]
69	TCHBLK2	0	Transmit Channel Block from Framer 2
70	TPOS2	0	Transmit Bipolar Data from Framer 2
71	TNEG2	0	Transmit Bipolar Data from Framer 2
72	RLINK2	0	Receive Link Data from Framer 2
73	RLCLK2	0	Receive Link Clock from Framer 2
74	RCLK2	Ι	Receive Clock for Framer 2
75	RNEG2	Ι	Receive Bipolar Data for Framer 2
76	RPOS2	Ι	Receive Bipolar Data for Framer 2
77	RSIG2	0	Receive Signaling Output from Framer 2
	[RCHCLK2]	[0]	[Receive Channel Clock from Framer 2]
78	VSS	—	Signal Ground
79	VDD	—	Positive Supply Voltage
80	RCHBLK2	0	Receive Channel Block from Framer 2

PIN	SYMBOL	TYPE	DESCRIPTION
81	RSYSCLK2	Ι	Receive System Clock for Elastic Store in Framer 2
82	RSYNC2	I/O	Receive Sync for Framer 2
83	RSER2	0	Receive Serial Data from Framer 2
84	JTDI	Ι	JTAG Test Data Input
	[RMSYNC2]	[O]	[Receive Multiframe Sync from Framer 2]
85	RFSYNC2	0	Receive Frame Sync from Framer 2
86	JTDO	0	JTAG Test Data Output
	[RLOS/LOTC2]	[O]	[Receive Loss of Sync/Loss of Transmit clock from Framer 2]
87	TCLK2	Ι	Transmit Clock for Framer 2
88	TLCLK2	0	Transmit Link Clock from Framer 2
89	TSYNC2	I/O	Transmit Sync for Framer 2
90	TLINK2	Ι	Transmit Link Data for Framer 2
91	TSYSCLK3	Ι	Transmit System Clock for Elastic Store in Framer 3
92	TSER3	Ι	Transmit Serial Data for Framer 3
93	TSSYNC3	Ι	Transmit Sync for Elastic Store in Framer 3
94	TSIG3	Ι	Transmit Signaling Input for Framer 3
	[TCHCLK3]		[Transmit Channel Clock from Framer 3]
95	TCHBLK3	0	Transmit Channel Block from Framer 3
96	TPOS3	0	Transmit Bipolar Data from Framer 3
97	TNEG3	0	Transmit Bipolar Data from Framer 3
98	RLINK3	0	Receive Link Data from Framer 3
99	RLCLK3	0	Receive Link Clock from Framer 3
100	RCLK3	Ι	Receive Clock for Framer 3
101	RNEG3	Ι	Receive Bipolar Data for Framer 3
102	RPOS3	Ι	Receive Bipolar Data for Framer 3
103	RSIG3	0	Receive Signaling Output from Framer 3
	[RCHCLK3]	[O]	[Receive Channel Clock from Framer 3]
104	RCHBLK3	0	Receive Channel Block from Framer 3
105	RSYSCLK3	Ι	Receive System Clock for Elastic Store in Framer 3
106	RSYNC3	I/O	Receive Sync for Framer 3
107	RSER3	0	Receive Serial Data from Framer 3
108	8MCLK	0	8MHz Clock
	[RMSYNC3]	[O]	[Receive Multiframe Sync from Framer 3]
109	RFSYNC3	0	Receive Frame Sync from Framer 3
110	VSS		Signal Ground
111	VDD		Positive Supply Voltage
112	CLKSI	Ι	8MCLK Clock Reference Input
	[RLOS/LOTC3]	[0]	[Receive Loss of Sync/Loss of Transmit clock from Framer 3]
113	TCLK3	Ι	Transmit Clock for Framer 3
114	TLCLK3	0	Transmit Link Clock from Framer 3
115	TSYNC3	I/O	Transmit Sync for Framer 3
116	TLINK3	Ι	Transmit Link Data for Framer 3
117	D0 or AD0	I/O	Data Bus Bit or Address/Data Bit 0; LSB
118	D1 or AD1	I/O	Data Bus Bit or Address/Data Bit 1
119	D2 or AD2	I/O	Data Bus Bit or Address/Data Bit 2
120	D3 or AD3	I/O	Data Bus Bit or Address/Data Bit 3
121	D4 or AD4	I/O	Data Bus Bit or Address/Data Bit 4

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
122	D5 or AD5	I/O	Data Bus Bit or Address/Data Bit 5
123	D6 or AD6	I/O	Data Bus Bit or Address/Data Bit 6
124	D7 or AD7	I/O	Data Bus Bit or Address/Data Bit 7; MSB
125	TSYSCLK0	Ι	Transmit System Clock for Elastic Store in Framer 0
126	TSER0	Ι	Transmit Serial Data for Framer 0
127	TSSYNC0	Ι	Transmit Sync for Elastic Store in Framer 0
128	TSIG0	Ι	Transmit Signaling Input for Framer 0
	[TCHCLK0]	[O]	[Transmit Channel Clock from Framer 0]

NOTES:

 Brackets [] indicate pin function when the DS21Q44 is configured for emulation of the DS21Q43, (FMS = 1).

Table 2-2. PIN DESCRIPTION SORTED BY PIN FUNCTION, FMS = 0

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
108	8MCLK	0	8MHz Clock
23	A0	Ι	Address Bus Bit 0; LSB
24	A1	Ι	Address Bus Bit 1
25	A2	Ι	Address Bus Bit 2
26	A3	Ι	Address Bus Bit 3
27	A4	Ι	Address Bus Bit 4
28	A5	Ι	Address Bus Bit 5
29	A6/ALE (AS)	Ι	Address Bus Bit 6; MSB or Address Latch Enable (Address
			Strobe)
46	A7	Ι	Address Bus Bit 7
61	BTS	Ι	Bus Type Select for Parallel Control Port
112	CLKSI	Ι	8MCLK Clock Reference Input
60	CS*	Ι	Chip Select
117	D0 or AD0	I/O	Data Bus Bit or Address/Data Bit 0; LSB
118	D1 or AD1	I/O	Data Bus Bit or Address/Data Bit 1
119	D2 or AD2	I/O	Data Bus Bit or Address/Data Bit 2
120	D3 or AD3	I/O	Data Bus Bit or Address/Data Bit 3
121	D4 or AD4	I/O	Data Bus Bit or Address/Data Bit 4
122	D5 or AD5	I/O	Data Bus Bit or Address/Data Bit 5
123	D6 or AD6	I/O	Data Bus Bit or Address/Data Bit 6
124	D7 or AD7	I/O	Data Bus Bit or Address/Data Bit 7; MSB
47	FMS	Ι	Framer Mode Select
58	FS0	Ι	Framer Select 0 for Parallel Control Port
59	FS1	Ι	Framer Select 1 for Parallel Control Port
30	INT*	0	Receive Alarm Interrupt for all Four Framers
52	JTCLK	Ι	JTAG Test Clock
84	JTDI	Ι	JTAG Test Data Input
86	JTDO	0	JTAG Test Data Output
50	JTMS	Ι	JTAG Test Mode Select
18	JTRST	Ι	JTAG Reset
64	MUX	Ι	Nonmultiplexed or Multiplexed Bus Select
10	RCHBLK0	0	Receive Channel Block from Framer 0
44	RCHBLK1	0	Receive Channel Block from Framer 1
80	RCHBLK2	0	Receive Channel Block from Framer 2
104	RCHBLK3	0	Receive Channel Block from Framer 3
6	RCLK0	Ι	Receive Clock for Framer 0
40	RCLK1	Ι	Receive Clock for Framer 1
74	RCLK2	Ι	Receive Clock for Framer 2
100	RCLK3	Ι	Receive Clock for Framer 3
62	RD*/(DS*)	Ι	Read Input (Data Strobe)
17	RFSYNC0	0	Receive Frame Sync from Framer 0
51	RFSYNC1	0	Receive Frame Sync from Framer 1
85	RFSYNC2	0	Receive Frame Sync from Framer 2
109	RFSYNC3	0	Receive Frame Sync from Framer 3

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
5	RLCLK0	0	Receive Link Clock from Framer 0
39	RLCLK1	0	Receive Link Clock from Framer 1
73	RLCLK2	0	Receive Link Clock from Framer 2
99	RLCLK3	0	Receive Link Clock from Framer 3
4	RLINK0	0	Receive Link Data from Framer 0
38	RLINK1	0	Receive Link Data from Framer 1
72	RLINK2	0	Receive Link Data from Framer 2
98	RLINK3	0	Receive Link Data from Framer 3
7	RNEG0	Ι	Receive Bipolar Data for Framer 0
41	RNEG1	Ι	Receive Bipolar Data for Framer 1
75	RNEG2	Ι	Receive Bipolar Data for Framer 2
101	RNEG3	Ι	Receive Bipolar Data for Framer 3
8	RPOS0	Ι	Receive Bipolar Data for Framer 0
42	RPOS1	Ι	Receive Bipolar Data for Framer 1
76	RPOS2	Ι	Receive Bipolar Data for Framer 2
102	RPOS3	Ι	Receive Bipolar Data for Framer 3
13	RSER0	0	Receive Serial Data from Framer 0
49	RSER1	0	Receive Serial Data from Framer 1
83	RSER2	0	Receive Serial Data from Framer 2
107	RSER3	0	Receive Serial Data from Framer 3
9	RSIG0	0	Receive Signaling Output from Framer 0
43	RSIG1	0	Receive Signaling output from Framer 1
77	RSIG2	0	Receive Signaling Output from Framer 2
103	RSIG3	0	Receive Signaling Output from Framer 3
12	RSYNC0	I/O	Receive Sync for Framer 0
48	RSYNC1	I/O	Receive Sync for Framer 1
82	RSYNC2	I/O	Receive Sync for Framer 2
106	RSYNC3	I/O	Receive Sync for Framer 3
11	RSYSCLK0	Ι	Receive System Clock for Elastic Store in Framer 0
45	RSYSCLK1	Ι	Receive System Clock for Elastic Store in Framer 1
81	RSYSCLK2	Ι	Receive System Clock for Elastic Store in Framer 2
105	RSYSCLK3	Ι	Receive System Clock for Elastic Store in Framer 3
16	SPARE1		Reserved. Must be left unconnected for normal operation
1	TCHBLK0	0	Transmit Channel Block from Framer 0
35	TCHBLK1	0	Transmit Channel Block from Framer 1
69	TCHBLK2	0	Transmit Channel Block from Framer 2
95	TCHBLK3	0	Transmit Channel Block from Framer 3
19	TCLK0	Ι	Transmit Clock for Framer 0
53	TCLK1	Ι	Transmit Clock for Framer 1
87	TCLK2	Ι	Transmit Clock for Framer 2
113	TCLK3	Ι	Transmit Clock for Framer 3
57	TEST	Ι	Tri-state Control for all Output and I/O Pins
20	TLCLK0	0	Transmit Link Clock from Framer 0
54	TLCLK1	0	Transmit Link Clock from Framer 1
88	TLCLK2	0	Transmit Link Clock from Framer 2
114	TLCLK3	0	Transmit Link Clock from Framer 3

PIN	SYMBOL	ТҮРЕ	DESCRIPTION
22	TLINK0	Ι	Transmit Link Data for Framer 0
56	TLINK1	Ι	Transmit Link Data for Framer 1
90	TLINK2	Ι	Transmit Link Data for Framer 2
116	TLINK3	Ι	Transmit Link Data for Framer 3
3	TNEG0	0	Transmit Bipolar Data from Framer 0
37	TNEG1	0	Transmit Bipolar Data from Framer 1
71	TNEG2	0	Transmit Bipolar Data from Framer 2
97	TNEG3	0	Transmit Bipolar Data from Framer 3
2	TPOS0	0	Transmit Bipolar Data from Framer 0
36	TPOS1	0	Transmit Bipolar Data from Framer 1
70	TPOS2	0	Transmit Bipolar Data from Framer 2
96	TPOS3	0	Transmit Bipolar Data from Framer 3
126	TSER0	Ι	Transmit Serial Data for Framer 0
32	TSER1	Ι	Transmit Serial Data for Framer 1
66	TSER2	Ι	Transmit Serial Data for Framer 2
92	TSER3	Ι	Transmit Serial Data for Framer 3
128	TSIG0	Ι	Transmit Signaling Input for Framer 0
34	TSIG1	Ι	Transmit Signaling Input for Framer 1
68	TSIG2	Ι	Transmit Signaling Input for Framer 2
94	TSIG3	Ι	Transmit Signaling Input for Framer 3
127	TSSYNC0	Ι	Transmit Sync for Elastic Store in Framer 0
33	TSSYNC1	Ι	Transmit Sync for Elastic Store in Framer 1
67	TSSYNC2	Ι	Transmit Sync for Elastic Store in Framer 2
93	TSSYNC3	Ι	Transmit Sync for Elastic Store in Framer 3
21	TSYNC0	I/O	Transmit Sync for Framer 0
55	TSYNC1	I/O	Transmit Sync for Framer 1
89	TSYNC2	I/O	Transmit Sync for Framer 2
115	TSYNC3	I/O	Transmit Sync for Framer 3
125	TSYSCLK0	Ι	Transmit System Clock for Elastic Store in Framer 0
31	TSYSCLK1	Ι	Transmit System Clock for Elastic Store in Framer 1
65	TSYSCLK2	Ι	Transmit System Clock for Elastic Store in Framer 2
91	TSYSCLK3	Ι	Transmit System Clock for Elastic Store in Framer 3
15	VDD		Positive Supply Voltage
79	VDD		Positive Supply Voltage
111	VDD		Positive Supply Voltage
14	VSS		Signal Ground
78	VSS		Signal Ground
110	VSS		Signal Ground
63	WR*/(R/W*)	Ι	Write Input (Read/Write)

3. DS21Q44 PIN FUNCTION DESCRIPTION

TRANSMIT SIDE PINS

Signal Name:TCLKSignal Description:Transmit ClockSignal Type:InputA 2.048 MHz primary clock.Used to clock data through the transmit side formatter.

Signal Name:TSERSignal Description:Transmit Serial DataSignal Type:InputTransmit NRZ serial data.Sampled on the falling edge of TCLK when the transmit side elastic store isdisabled.Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.

Signal Name:TCHCLKSignal Description:Transmit Channel ClockSignal Type:Output

A 256-kHz clock which pulses high during the LSB of each channel. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name:	TCHBLK
Signal Description:	Transmit Channel Block
Signal Type:	Output

A user programmable output that can be forced high or low during any of the 32 E1 channels. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYSCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all E1 channels are used such as Fractional E1, 384 kbps (H0), 768 kbps, 1920 bps (H12) or ISDN–PRI. Also useful for locating individual channels in drop–and–insert applications, for external per–channel loopback, and for per–channel conditioning. See Section 12 for details. Signal Name:TSYSCLKSignal Description:Transmit System ClockSignal Type:Input1.544 MHz or 2.048 MHz clock.Only used when the transmit side elastic store function is enabled.Should be tied low in applications that do not use the transmit side elastic store.Can be burst at rates up to 8.192 MHz.

Signal Name:TLCLKSignal Description:Transmit Link ClockSignal Type:Output4 kHz to 20 kHz demand clock for the TLINK input.See Section 14 for details.

Signal Name:TLINKSignal Description:Transmit Link DataSignal Type:InputIf enabled, this pin will be sampled on the falling edge of TCLK for data insertion into any combinationof the Sa bit positions (Sa4 to Sa8). See Section 14 for details.

Signal Name:	TSYNC
Signal Description:	Transmit Sync
Signal Type:	Input /Output
A pulse at this pin will	establish either frame or multiframe boundaries for the transmit side. This pin can
also be programmed to	output either a frame or multiframe pulse. Always synchronous with TCLK.

Signal Name:	TSSYNC
Signal Description:	Transmit System Sync
Signal Type:	Input

Only used when the transmit side elastic store is enabled. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Should be tied low in applications that do not use the transmit side elastic store. Always synchronous with TSYSCLK.

 Signal Name:
 TSIG

 Signal Description:
 Transmit Signaling Input

 Signal Type:
 Input

 When enabled, this input will sample signaling bits for insertion into outgoing PCM E1 data stream.

 Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of the falling edg

Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled. This function is available when FMS = 0.

Signal Name:TPOSSignal Description:Transmit Positive Data OutputSignal Type:OutputUpdated on the rising edge of TCLK with the bipolar data out of the transmit side formatter. Can beprogrammed to source NRZ data via the Output Data Format (TCR1.7) control bit.

Signal Name:TNEGSignal Description:Transmit Negative Data OutputSignal Type:OutputUpdated on the rising edge of TCLK with the bipolar data out of the transmit side formatter.

RECEIVE SIDE PINS

Signal Name:RLINKSignal Description:Receive Link DataSignal Type:OutputUpdated with full recovered E1 data stream on the rising edge of RCLK.

Signal Name:RLCLKSignal Description:Receive Link ClockSignal Type:OutputA 4 kHz to 20-kHz clock for the RLINK output. Used for sampling Sa bits.

Signal Name:RCLKSignal Description:Receive Clock InputSignal Type:Input2.048 MHz clock that is used to clock data through the receive side framer.

Signal Name:	RCHCLK
Signal Description:	Receive Channel Clock
Signal Type:	Output

A 256-kHz clock which pulses high during the LSB of each channel. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name:	RCHBLK
Signal Description:	Receive Channel Block
Signal Type:	Output

A user programmable output that can be forced high or low during any of the 32 E1 channels. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYSCLK when the receive side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all E1 channels are used such as Fractional E1, 384 kbps service, 768 kbps, or ISDN–PRI. Also useful for locating individual channels in drop–and–insert applications, for external per–channel loopback, and for per–channel conditioning. See Section 12 for details.

Signal Name:RSERSignal Description:Receive Serial DataSignal Type:OutputReceived NRZ serial data.Updated on rising edges of RCLK when the receive side elastic store isdisabled.Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled.

Signal Name:	RSYNC
Signal Description:	Receive Sync
Signal Type:	Input /Output

An extracted pulse, one RCLK wide, is output at this pin which identifies either frame or CAS/CRC multiframe boundaries. If the receive side elastic store is enabled, then this pin can be enabled to be an input at which a frame or multiframe boundary pulse synchronous with RSYSCLK is applied.

Signal Name:**RFSYNC**Signal Description:**Receive Frame Sync**Signal Type:**Output**An extracted 8-kHz pulse, one RCLK wide, is output at this pin which identifies frame boundaries.

Signal Name:RMSYNCSignal Description:Receive Multiframe SyncSignal Type:OutputAn extracted pulse, one RSYSCLK wide, is output at this pin which identifies multiframe boundaries. Ifthe receive side elastic store is disabled, then this output will output multiframe boundaries associatedwith RCLK. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name:RSYSCLKSignal Description:Receive System ClockSignal Type:Input1.544 MHz or 2.048 MHz clock.Only used when the elastic store function is enabled.Iow in applications that do not use the elastic store.Can be burst at rates up to 8.192 MHz.

Signal Name:	RSIG
Signal Description:	Receive Signaling Output
Signal Type:	Output
Outputs signaling bits i	in a PCM format. Updated on rising edges of RCLK when the receive side elastic
store is disabled. Upda	ted on the rising edges of RSYSCLK when the receive side elastic store is
enabled. This function	is available when $FMS = 0$.

Signal Name:RLOS/LOTCSignal Description:Receive Loss of Sync / Loss of Transmit ClockSignal Type:OutputA dual function output that is controlled by the TCR2.0 control bit. This pin can be programmed to eithertoggle high when the synchronizer is searching for the frame and multiframe or to toggle high if theTCLK pin has not been toggled for 5 usec. This function is available when FMS = 1 (DS21Q43)

ICLK pin has not been toggled for 5 emulation).

Signal Name:CLKSISignal Description:8 MHz Clock ReferenceSignal Type:InputA 2.048 MHz reference clock used in the generation of 8MCLK. This function is available whenFMS = 0.

Signal Name:	8MCLK
Signal Description:	8 MHz Clock
Signal Type:	Output
A 8.192 MHz output c	lock that is referenced to the clock that is input at the CLKSI pin. This function i
available when $FMS =$	0.

Signal Name:RPOSSignal Description:Receive Positive Data InputSignal Type:InputSampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS andRNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolarviolation monitoring circuitry.

Signal Name:RNEGSignal Description:Receive Negative Data InputSignal Type:InputSampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS andRNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolarviolation monitoring circuitry.

PARALLEL CONTROL PORT PINS

Signal Name:INT*Signal Description:InterruptSignal Type:OutputFlags host controller during conditions and change of conditions defined in the Status Registers 1 and 2and the FDL Status Register. Active low, open drain output.

Signal Name:FMSSignal Description:Framer Mode SelectSignal Type:InputSet low to select DS21Q44 feature set.Set high to select DS21Q43 emulation.

Signal Name:MUXSignal Description:Bus OperationSignal Type:InputSet low to select non-multiplexed bus operation.Set high to select multiplexed bus operation.

Signal Name:D0 TO D7 / AD0 TO AD7Signal Description:Data Bus or Address/Data BusSignal Type:Input /OutputIn non-multiplexed bus operation (MUX = 0), serves as the data bus.In multiplexed bus operation (MUX = 1), serves as a 8-bit multiplexed address / data bus.

Signal Name:A0 TO A5, A7Signal Description:Address BusSignal Type:InputIn non-multiplexed bus operation (MUX = 0), serves as the address bus. In multiplexed bus operation (MUX = 1), these pins are not used and should be tied low.

Signal Name:ALE (AS) / A6Signal Description:Address Latch Enable (Address Strobe) or A6Signal Type:InputIn non-multiplexed bus operation (MUX = 0), serves as address bit 6. In multiplexed bus operation (MUX = 1), serves to demultiplex the bus on a positive-going edge.

Signal Name:BTSSignal Description:Bus Type SelectSignal Type:InputStrap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls thefunction of the RD*(DS*), ALE(AS), and WR*(R/W*) pins. If BTS = 1, then these pins assume thefunction listed in parenthesis ().

Signal Name:RD* (DS*)Signal Description:Read Input (Data Strobe)Signal Type:InputRD* and DS* are active low signals. Note: DS is active high when MUX=1. Refer to bus timingdiagrams in section 19.

Signal Name:FS0 AND FS1Signal Description:Framer SelectsSignal Type:InputSelects which of the four framers to be accessed.

Signal Name:CS*Signal Description:Chip SelectSignal Type:InputMust be low to read or write to the device.CS* is an active low signal.

Signal Name:WR* (R/W*)Signal Description:Write Input (Read/Write)Signal Type:InputWR* is an active low signal.

TEST ACCESS PORT PINS

Signal Name:TESTSignal Description:3-State ControlSignal Type:InputSet high to 3-state all output and I/O pins (including the parallel control port). Set low for normaloperation.Useful in board level testing.

Signal Name:	JTRST
Signal Description:	IEEE 1149.1 Test Reset
Signal Type:	Input
If $FMS = 1$ · IT ΔG for	nctionality is not available a

If FMS = 1: JTAG functionality is not available and JTRST is held LOW internally. If FMS = 0: JTAG functionality is available and JTRST is pulled up internally by a 10=kilo ohm resistor. If FMS = 0, and boundary scan is not used this pin should be held low. This signal is used to asynchronously reset the test access port controller. The device enters the DEVICE ID MODE when JTRST is pulled high. The device enters the DEVICE ID MODE when JTRST is pulled high. The device operates as a T1/E1 transceiver if JTRST is pulled low. Signal Name:JTMSSignal Description:IEEE 1149.1 Test Mode SelectSignal Type:InputThis pin is sampled on the rising edge of JTCLK and is used to place the test port into the various definedIEEE 1149.1 states.If not used, this pin should be pulled high. This function is available when FMS = 0.

Signal Name:	JTCLK
Signal Description:	IEEE 1149.1 Test Clock Signal
Signal Type:	Input
This signal is used to sl	hift data into JTDI on the rising edge and out of JTDO on the falling edge. If not
used, this pin should be	e tied to VSS. This function is available when $FMS = 0$.

Signal Name:JTDISignal Description:IEEE 1149.1 Test Data InputSignal Type:InputTest instructions and data are clocked into this pin on the rising edge of JTCLK. If not used, this pinshould be pulled high.This function is available when FMS = 0.

Signal Name:	JTDO
Signal Description:	IEEE 1149.1 Test Data Output
Signal Type:	Output
Test instructions and d	ata are clocked out of this pin on the falling edge of JTCLK. If not used, this pin
should be left unconne	cted. This function is available when $FMS = 0$.

SUPPLY PINS

Signal Name:	VDD
Signal Description:	Positive Supply
Signal Type:	Supply
2.97 to 3.63 volts.	

Signal Name:	VSS
Signal Description:	Signal Ground
Signal Type:	Supply
0.0 volts.	

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
00	R	BPV or Code Violation Count 1	VCR1
01	R	BPV or Code Violation Count 2	VCR2
02	R	CRC4 Error Count 1 / FAS Error Count 1	CRCCR1
03	R	CRC4 Error Count 2	CRCCR2
04	R	E-Bit Count 1 / FAS Error Count 2	EBCR1
05	R	E-Bit Count 2	EBCR2
06	R/W	Status 1	SR1
07	R/W	Status 2	SR2
08	R/W	Receive Information	RIR
09	R/W	Test 2	TEST2 (set to 00h)
0A		Not used	(set to 00H)
0B		Not used	(set to 00H)
0C		Not used	(set to 00H)
0D		Not used	(set to 00H)
0 E		Not used	(set to 00H)
0F	R	Device ID	IDR
10	R/W	Receive Control 1	RCR1
11	R/W	Receive Control 2	RCR2
12	R/W	Transmit Control 1	TCR1
13	R/W	Transmit Control 2	TCR2
14	R/W	Common Control 1	CCR1
15	R/W	Test 1	TEST1 (set to 00h)
16	R/W	Interrupt Mask 1	IMR1
17	R/W	Interrupt Mask 2	IMR2
18		Not used	(set to 00H)
19		Not used	(set to 00H)
1A	R/W	Common Control 2	CCR2
1B	R/W	Common Control 3	CCR3
1C	R/W	Transmit Sa Bit Control	TSaCR
1D	R/W	Common Control 6	CCR6
1E	R	Synchronizer Status	SSR
1F	R	Receive Nonalign Frame	RNAF
20	R/W	Transmit Align Frame	TAF
21	R/W	Transmit Non-Align Frame	TNAF
22	R/W	Transmit Channel Blocking 1	TCBR1
23	R/W	Transmit Channel Blocking 2	TCBR2
24	R/W	Transmit Channel Blocking 3	TCBR3
25	R/W	Transmit Channel Blocking 4	TCBR4
26	R/W	Transmit Idle 1	TIR1
27	R/W	Transmit Idle 2	TIR2
28	R/W	Transmit Idle 3	TIR3
29	R/W	Transmit Idle 4	TIR4

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
2A	R/W	Transmit Idle Definition	TIDR
2B	R/W	Receive Channel Blocking 1	RCBR1
2C	R/W	Receive Channel Blocking 2	RCBR2
2D	R/W	Receive Channel Blocking 3	RCBR3
2E	R/W	Receive Channel Blocking 4	RCBR4
2F	R	Receive Align Frame	RAF
30	R	Receive Signaling 1	RS1
31	R	Receive Signaling 2	RS2
32	R	Receive Signaling 3	RS3
33	R	Receive Signaling 4	RS4
34	R	Receive Signaling 5	RS5
35	R	Receive Signaling 6	RS6
36	R	Receive Signaling 7	RS7
37	R	Receive Signaling 8	RS8
38	R	Receive Signaling 9	RS9
39	R	Receive Signaling 10	RS10
3A	R	Receive Signaling 11	RS11
3B	R	Receive Signaling 12	RS12
3C	R	Receive Signaling 13	RS13
3D	R	Receive Signaling 14	RS14
3E	R	Receive Signaling 15	RS15
3F	R	Receive Signaling 16	RS16
40	R/W	Transmit Signaling 1	TS1
41	R/W	Transmit Signaling 2	TS2
42	R/W	Transmit Signaling 3	TS3
43	R/W	Transmit Signaling 4	TS4
44	R/W	Transmit Signaling 5	TS5
45	R/W	Transmit Signaling 6	TS6
46	R/W	Transmit Signaling 7	TS7
47	R/W	Transmit Signaling 8	TS8
48	R/W	Transmit Signaling 9	TS9
49	R/W	Transmit Signaling 10	TS10
4A	R/W	Transmit Signaling 11	TS11
4B	R/W	Transmit Signaling 12	TS12
4C	R/W	Transmit Signaling 13	TS13
4D	R/W	Transmit Signaling 14	TS14
4E	R/W	Transmit Signaling 15	TS15
4F	R/W	Transmit Signaling 16	TS16
50	R/W	Transmit Si Bits Align Frame	TSiAF
51	R/W	Transmit Si Bits Nonalign Frame	TSiNAF
52	R/W	Transmit Remote Alarm Bits	TRA
53	R/W	Transmit Sa4 Bits	TSa4
54	R/W	Transmit Sa5 Bits	TSa5
55	R/W	Transmit Sa6 Bits	TSa6
56	R/W	Transmit Sa7 Bits	TSa7

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
57	R/W	Transmit Sa8 Bits	TSa8
58	R	Receive Si bits Align Frame	RSiAF
59	R	Receive Si bits Nonalign Frame	RSiNAF
5A	R	Receive Remote Alarm Bits	RRA
5B	R	Receive Sa4 Bits	RSa4
5C	R	Receive Sa5 Bits	RSa5
5D	R	Receive Sa6 Bits	RSa6
5E	R	Receive Sa7 Bits	RSa7
5F	R	Receive Sa8 Bits	RSa8
60	R/W	Transmit Channel 1	TC1
61	R/W	Transmit Channel 2	TC2
62	R/W	Transmit Channel 3	TC3
63	R/W	Transmit Channel 4	TC4
64	R/W	Transmit Channel 5	TC5
65	R/W	Transmit Channel 6	TC6
66	R/W	Transmit Channel 7	TC7
67	R/W	Transmit Channel 8	TC8
68	R/W	Transmit Channel 9	ТС9
69	R/W	Transmit Channel 10	TC10
6A	R/W	Transmit Channel 11	TC11
6B	R/W	Transmit Channel 12	TC12
6C	R/W	Transmit Channel 13	TC13
6D	R/W	Transmit Channel 14	TC14
6E	R/W	Transmit Channel 15	TC15
6F	R/W	Transmit Channel 16	TC16
70	R/W	Transmit Channel 17	TC17
71	R/W	Transmit Channel 18	TC18
72	R/W	Transmit Channel 19	TC19
73	R/W	Transmit Channel 20	TC20
74	R/W	Transmit Channel 21	TC21
75	R/W	Transmit Channel 22	TC22
76	R/W	Transmit Channel 23	TC23
77	R/W	Transmit Channel 24	TC24
78	R/W	Transmit Channel 25	TC25
79	R/W	Transmit Channel 26	TC26
7A	R/W	Transmit Channel 27	TC27
7B	R/W	Transmit Channel 28	TC28
7C	R/W	Transmit Channel 29	ТС29
7D	R/W	Transmit Channel 30	TC30
7E	R/W	Transmit Channel 31	TC31
7F	R/W	Transmit Channel 32	TC32
80	R/W	Receive Channel 1	RC1
81	R/W	Receive Channel 2	RC2
82	R/W	Receive Channel 3	RC3
83	R/W	Receive Channel 4	RC4

ADDRESS	R/W	REGISTER NAME	REGISTER
84	R/W	Receive Channel 5	RC5
85	R/W	Receive Channel 6	RC6
86	R/W	Receive Channel 7	RC7
87	R/W	Receive Channel 8	RC8
88	R/W	Receive Channel 9	RC9
89	R/W	Receive Channel 10	RC10
8A	R/W	Receive Channel 11	RC11
8B	R/W	Receive Channel 12	RC12
8C	R/W	Receive Channel 13	RC13
8D	R/W	Receive Channel 14	RC14
8E	R/W	Receive Channel 15	RC15
8F	R/W	Receive Channel 16	RC16
90	R/W	Receive Channel 17	RC17
91	R/W	Receive Channel 18	RC18
92	R/W	Receive Channel 19	RC19
93	R/W	Receive Channel 20	RC20
94	R/W	Receive Channel 21	RC21
95	R/W	Receive Channel 22	RC22
96	R/W	Receive Channel 23	RC23
97	R/W	Receive Channel 24	RC24
98	R/W	Receive Channel 25	RC25
99	R/W	Receive Channel 26	RC26
9A	R/W	Receive Channel 27	RC27
9B	R/W	Receive Channel 28	RC28
9C	R/W	Receive Channel 29	RC29
9D	R/W	Receive Channel 30	RC30
9E	R/W	Receive Channel 31	RC31
9F	R/W	Receive Channel 32	RC32
A0	R/W	Transmit Channel Control 1	TCC1
A1	R/W	Transmit Channel Control 2	TCC2
A2	R/W	Transmit Channel Control 3	TCC3
A3	R/W	Transmit Channel Control 4	TCC4
A4	R/W	Receive Channel Control 1	RCC1
A5	R/W	Receive Channel Control 2	RCC2
A6	R/W	Receive Channel Control 3	RCC3
A7	R/W	Receive Channel Control 4	RCC4
A8	R/W	Common Control 4	CCR4
A9	R	Transmit DS0 Monitor	TDS0M
AA	R/W	Common Control 5	CCR5
AB	R	Receive DS0 Monitor	RDS0M
AC	R/W	Test 3	TEST3 (set to 00H)
AD		Not used	(set to 00H)
AE		Not used	(set to 00H)
AF		Not used	(set to 00H)
B0	R/W	HDLC Control Register	HCR

ADDRESS	R/W	REGISTER NAME	REGISTER ABBREVIATION
B1	R/W	HDLC Status Register	HSR
B2	R/W	HDLC Interrupt Mask Register	HIMR
B3	R/W	Receive HDLC Information Register	RHIR
B4	R/W	Receive HDLC FIFO Register	RHFR
B5	R/W	Interleave Bus Operation Register	IBO
B6	R/W	Transmit HDLC Information Register	THIR
B7	R/W	Transmit HDLC FIFO Register	THFR
B8	R/W	Receive HDLC DS0 Control Register 1	RDC1
B9	R/W	Receive HDLC DS0 Control Register 2	RDC2
BA	R/W	Transmit HDLC DS0 Control Register 1	TDC1
BB	R/W	Transmit HDLC DS0 Control Register 2	TDC2
BC	_	Not used	(set to 00H)
BD	_	Not used	(set to 00H)
BE	_	Not used	(set to 00H)
BF	_	Not used	(set to 00H)

NOTES:

- 1) Test Registers 1, 2, and 3 are used only by the factory; these registers must be cleared (set to all 0's) on power-up initialization to ensure proper operation.
- 2) Register banks CxH, DxH, ExH, and FxH are not accessible.

5. PARALLEL PORT

The DS21Q44 is controlled via either a non-multiplexed (MUX = 0) or a multiplexed (MUX = 1) bus by an external microcontroller or microprocessor. The DS21Q44 can operate with either Intel or Motorola bus timing configurations. If the BTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parenthesis (). See the timing diagrams in the A.C. Electrical Characteristics in Section 19 for more details.

6. CONTROL, ID, AND TEST REGISTERS

The operation of each framer within the DS21Q44 is configured via a set of ten control registers. Typically, the control registers are only accessed when the system is first powered up. Once a channel in the DS21Q44 has been initialized, the control registers will only need to be accessed when there is a change in the system configuration. There are two Receive Control Register (RCR1 and RCR2), two Transmit Control Registers (TCR1 and TCR2), and six Common Control Registers (CCR1 to CCR6). Each of the ten registers are described in this section.

There is a device Identification Register (IDR) at address 0Fh. The MSB of this read–only register is fixed to a one indicating that the DS21Q44 is present. The T1 pin–for–pin compatible version of the DS21Q44 is the DS21Q42 and it also has an ID register at address 0Fh and the user can read the MSB to determine which chip is present since in the DS21Q42 the MSB will be set to a zero and in the DS21Q44 it will be set to a one. The lower 4 bits of the IDR are used to display the die revision of the chip.