

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

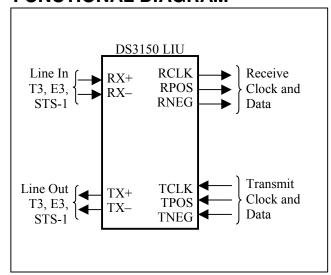
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


DS3150 3.3V T3 / E3 / STS-1 Line Interface

www.dalsemi.com

FEATURES

- Integrated transmit and receive for T3, E3 and STS-1 line interfaces
- Performs clock/data recovery and wave shaping
- Requires no special external components other than 1:2 transformers
- Interfaces to 75Ω coaxial cable at lengths up to 380 meters (T3), 440 meters (E3), or 360 meters (STS-1)
- Adaptive receive equalizer handles from 0 dB to 15 dB of cable loss
- Interfaces directly to a DSX monitor signal (20 dB flat loss)
- On-chip jitter attenuator can be placed either in the receive path or the transmit path
- Built-in B3ZS and HDB3 coder/decoder
- Bipolar and NRZ interfaces
- Analog and digital loopbacks
- Onboard 2¹⁵ 1 and 2²³ 1 Pseudo Random Bit Sequence (PRBS) generator and detector
- Transmit line driver monitor checks for a faulty transmitter or a shorted output
- Complete T3 AIS generator (ANSI T1.107)
- Unframed all ones generator (E3 AIS)
- Digital clock inversion capability
- Tri-state line driver for low-power mode
- Loss of signal detector (ANSI T1.231-1999 and ITU G.775)
- Pin compatible to the TDK 78P7200 and 78P2241 footprint
- Low power 3.3V operation (5V tolerant I/O)
- Industrial temperature range: -40°C to +85°C
- Small packaging: 28-lead PLCC, 48-lead TQFP and 49-lead CSBGA (7 x 7 mm)

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DS3150QN	28-lead PLCC (-40°C to +85°C)
DS3150Q	28-lead PLCC (0°C to 70°C)
DS3150TN	48-lead TQFP (-40°C to +85°C)
DS3150T	48-lead TQFP (0°C to 70°C)
DS3150GN	49-lead CSBGA (-40°C to +85°C)
DS3150G	49-lead CSBGA (0°C to 70°C)

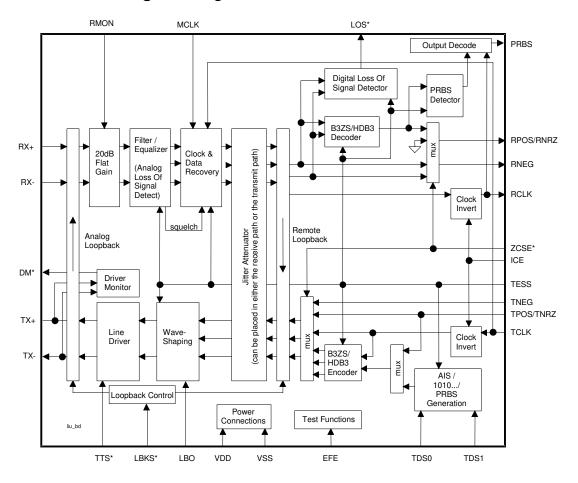

1 of 22 110200

TABLE OF CONTENTS	
Section 1: Functional Description	2
Section 2: Signal Description	11
Section 3: AC Characteristics	15
Section 4: Pin Assignments	17
Section 5: Mechanical Dimensions	19
Section 6: Applications	22

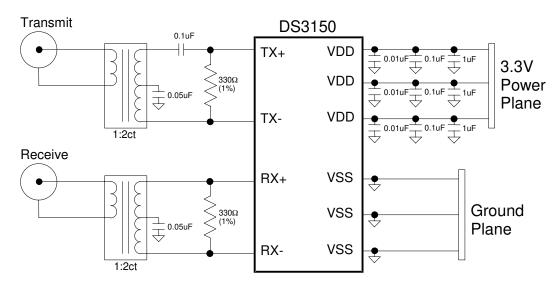
SECTION 1: FUNCTIONAL DESCRIPTION

The DS3150 performs all of the functions necessary for interfacing at the physical layer to T3, E3, and STS-1 lines. The device has independent receive and transmit paths. See Figure 1A. The receiver performs clock and data recovery from a B8ZS- or HDB3-code AMI signal and monitors for loss of the incoming signal. The receiver data optionally can be B8ZS/HDB3 decoded and output in NRZ format. The transmitter accepts either NRZ or bipolar data and drives standard pulse-shape waveforms onto 75 ohm coaxial cable. The receiver and transmitter sections will be discussed separately below. Table 1A lists the telecommunications standards that the DS3150 was designed to meet.

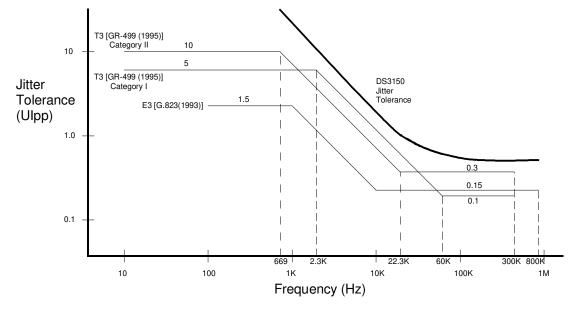
DS3150 Block Diagram Figure 1A

	_ ~~ ~
Applicable Star	ndards Table 1A
T1.102-1993	(ANSI) "Digital Hierarchy – Electrical Interfaces"
T1.107-1995	(ANSI) "Digital Hierarchy - Formats Specification"
T1.231-1997	(ANSI) Draft "Digital Hierarchy - Layer 1 In-Service Digital Transmission
	Performance Monitoring"
T1.231-1993	(ANSI) "Digital Hierarchy - Layer 1 In-Service Digital Transmission Performance
	Monitoring"
T1.404-1994	(ANSI) "Network-to-Customer Installation - DS3 Metallic Interface Specification"
GR-499-CORE	(Bellcore) Issue 1, December1995 "Transport Systems Generic Requirements
	(TSGR): Common Requirements"
GR-253-CORE	(Bellcore) Issue 2, December 1995 "SONET Transport Systems: Common
	Generic Criteria"
G.703, 1991	(ITU) "Physical/Electrical Characteristics of Hierarchical Digital Interfaces
G.751, 1993	(ITU) "Digital Multiplex Equipment Operating at the Third Order Bit Rate of
	34,368 kbit/s and the Fourth Order bit Rate of 139,264 kbit/s and Using Postive
	Justification"
G.823, 1993	(ITU) "The Control of Jitter and Wander Within Digital Networks Which are
	Based on the 2048 kbit/s Hierarchy"
G.775, 1994	(ITU) "Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection
	and Clearance Criteria"
O.151, 1992	(ITU)"Error Performance Measuring Equipment Operating at the Primary Rate and
	Above"
TBR 24, 1997	(ETSI) "Business TeleCommunications; 34Mbit/s digital unstructured and
	structured lease lines; attachment requirements for terminal equipment interface
ETS 300 687, 1996	(ETSI) "Business TeleCommunications; 34Mbit/s digital leased lines (D34U and
	D34S); Connection characteristics
ETS 300 686, 1996	(ETSI) "Business TeleCommunications; 34Mbit/s and 140Mbits/s digital leased
	lines (D34U, D34S, D140U and D140S); Network interface presentation

RECEIVER


The DS3150 interfaces to the receive T3/E3/STS-1 coax line via a 1:2 step up transformer. See Figure 1B. The receiver automatically adapts to coax cable loses from 0 to 15 dB which translates into 0 to 380 meters (T3) or 440 meters (E3) or 360 meters (STS-1) of coax cable (AT&T 734A or equivalent). The receiver has the ability to interface to monitor jacks as well. Via the RMON input (see Table 2A), the device can be configured to insert a 20 dB flat boost into the incoming signal. Monitor jacks typically have series resistors that result in a resistive loss of 20 dB. The receiver has excellent jitter tolerance characteristics. See Figure 1C.

The receiver contains both analog and digital loss-of-signal detectors. The analog loss of signal detector resides in the equalizer. If the incoming signal drops below –24 dB of the nominal signal level, the analog loss-of-signal detector will activate and it will step on the recovered data and force all zeros out of the data recovery circuitry. The analog loss-of-signal detector will not clear until the signal level is above -18 dB of the nominal signal level. The digital Loss of Signal (LOS) detector is activated when it detects 192±1 consecutive zeros. LOS is cleared when there are no Excessive Zero occurrences over a span of 192±1 clock periods. An Excessive Zero occurrence is defined as 3 or more consecutive zeros in the T3 and STS-1 modes and 4 or more zeros in the E3 mode. The status of the digital LOS is reflected at the LOS* output (see Table 2A). There is no status output available for the analog loss-of-signal detector. While the device is in a loss-of-signal state, the RCLK output will be referenced to the MCLK input (or the TCLK input if MCLK is high/floating or to the internal oscillator if MCLK is tied low). The analog


loss-of-signal detector has a longer time constant than the digital LOS. Hence when the incoming signal is lost, the digital LOS will activate first followed by the analog loss-of-signal detector. When a signal is restored, the digital LOS will not be allowed to qualify a signal for no Excessive Zero violations until the analog loss-of-signal detector has seen the signal rise above –18 dB. Governing specifications for the loss-of-signal detectors are ANSI T1.231 and ITU G.775.

The recovered data from the receiver can be output in either bipolar format or a Non Return to Zero (NRZ) format. To select the bipolar format, the ZCSE* input is tied high. In this format, the B3ZS/HDB3 decoder is disabled and the received data is buffered and then output on the RPOS and RNEG outputs. To select the NRZ format, the ZCSE* input is tied low. In this format, the B3ZS/HBD3 decoder is enabled and the recovered data is B3ZS/HDB3 decoded and then logically OR'ed together and output at the RPOS output while the RNEG output is forced low.

DS3150 EXTERNAL CONNECTION Figure 1B

DS3150 RECEIVER JITTER TOLERANCE Figure 1C

TRANSMITTER

Via the ZCSE* input, the device is configured to accept either bipolar data or NRZ data to be input to the transmitter. When the ZCSE* input is tied high, bipolar data must be applied at the TPOS and TNEG inputs. In this mode, the device will not perform B3ZS/HDB3-encoding on the outgoing data stream. When the ZCSE* input is tied low, an NRZ data stream must be applied at the TPOS input (TNEG is ignored). In this mode, the device will perform B3ZS/HDB3-encoding on the outgoing data stream.

The clock applied at the TCLK input is used to transmit data onto the T3/E3/STS-1 line. Hence TCLK must be of transmission quality (i.e. accurate to ± 20 ppm). The duty cycle of TCLK is not a key parameter as long as the clock high and low times listed in Section 3 are met.

The DS3150 also has the ability to generate a number of different patterns, including an unframed all ones pattern (which is also the E3 AIS signal), a 101010... pattern, or a T3 Alarm Indication Signal (AIS). See Figure 1E for a description of the T3 AIS. The TDS0 and TDS1 inputs are used to select these onboard patterns. See Tables 2A and 2B.

The DS3150 interfaces to the transmit T3/E3/STS-1 coax cable via a 1:2 step up transformer. See Figure 1B. It will drive the 75 ohm cable and create the proper waveforms required for interfacing to T3/E3/STS-1 lines. In T3 and STS-1 modes, the LBO (Line Build-Out) pin controls waveform shape. For cable lengths less than 225 feet, LBO should be pulled high. For 225 feet or more of cable, LBO should be pulled low. Tables 1C through 1G and Figure 1D detail the waveform template specifications and testing parameters.

The transmitter can be disabled and the TX+ and TX- outputs tri-stated via the TTS* input. See Table 2A for details.

The transmit driver monitor constantly checks the analog signal output at TX+ and TX-. If the output fails, then the DM* output will be pulled low. See Figures 1F and 1G. When the transmitter is disabled (TTS*=0) or enhanced features are disabled (EFE=0), the driver monitor is also disabled.

T3 TRANSMIT WAVEFORM TEMPLATE Table 1C

TO THATOMIT WAVE OTHER TEMP PAGE TO

Upper Curve

Time Axis Range

$-0.85 \le T \le -0.68$	0.03
$-0.68 \le T \le 0.36$	0.5 $\{1 + \sin[(\pi/2)(1 + T/0.34)]\} + 0.03$ 0.08 + 0.407e ^{-1.84(T - 0.36)}
$0.36 \le T \le 1.4$	$0.08 + 0.407e^{-1.84(T - 0.36)}$

Normalized Amplitude Equations

Lower Curve

$-0.85 \le T \le -0.36$	-0.03
$-0.36 \le T \le 0.36$	$0.5 \{1 + \sin[(\pi/2)(1 + T/0.18)]\} - 0.03$
$0.36 \le T \le 1.4$	-0.03

Governing Specifications: ANSI T1.102-1993 and Bellcore GR-499.

T3 TRANSMIT WAVEFORM TEST PARAMETERS AND LIMITS Table 1D

Parameter	Specification
Rate	44.736 Mbit/s (± 20 ppm)
Line code	B3ZS
Transmission medium	coax cable (AT&T 734A or equivalent)
Test measurement point	At the end of 0 to 450 feet of coax cable
Test termination	75Ω (± 1%) resistive
Pulse amplitude	Between 0.36V and 0.85V
Pulse shape	An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the curved listed in Table 1C
Unframed All Ones Power level @ 22.368 MHz	Between –1.8 dBm and +5.7 dBm
Unframed All Ones Power level @ 44.736 MHz	At least 20 dB less than the power measured at 22.368 MHz
Pulse imbalance of isolated pulses	Ratio of positive and negative pulses must be between 0.90 and 1.10

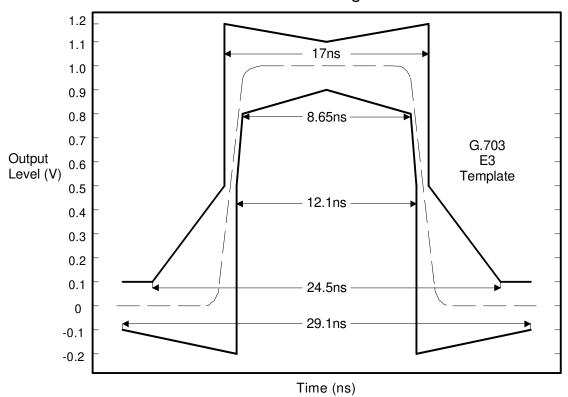
STS-1 TRANSMIT WAVEFORM TEMPLATE Table 1E

Time Axis Range	Normalized Amplitude Equations

Upper Curve

$-0.85 \le T \le -0.68$	0.03
$-0.68 \le T \le 0.26$	$0.5 \{1 + \sin[(\pi/2)(1 + T/0.34)]\} + 0.03$
$0.26 \le T \le 1.4$	$0.5 \{1 + \sin[(\pi/2)(1 + T/0.34)]\} + 0.03$ $0.1 + 0.61e^{-2.4(T - 0.26)}$

Lower Curve


$-0.85 \le T \le -0.36$	-0.03
$-0.36 \le T \le 0.36$	$0.5 \{1 + \sin[(\pi/2)(1 + T/0.18)]\} - 0.03$
$0.36 \le T \le 1.4$	-0.03

Governing Specifications: Bellcore GR-253 and Bellcore GR-499.

STS-1 TRANSMIT WAVEFORM TEST PARAMETERS AND LIMITS Table 1F

Parameter	Specification
Rate	51.840 Mbit/s (± 20 ppm)
Line code	B3ZS
Transmission medium	coax cable (AT&T 734A or equivalent)
Test measurement point	At the end of 0 to 450 feet of coax cable
Test termination	$75\Omega (\pm 1\%)$ resistive
Pulse shape	An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the curved listed in Table 1E
Unframed All Ones Power level @ 25.92 MHz	Between –1.8 dBm and +5.7 dBm
Unframed All Ones Power level @51.84 MHz	At least 20 dB less than the power measured at 25.92 MHz

E3 TRANSMIT WAVEFORM TEMPLATE Figure 1D

E3 TRANSMIT WAVEFORM TEST PARAMETERS AND LIMITS Table 1G

Parameter	Specification
Rate	34.368 Mbit/s (± 20 ppm)
Line code	HDB3
Transmission medium	coax cable (AT&T 734A or equivalent)
Test measurement point	At the transmitter
Test termination	$75\Omega \ (\pm \ 1\%)$ resistive
Pulse amplitude	1.0V (nominal)
Pulse shape	An isolated pulse (preceded by two zeros and
	followed by one or more zeros) falls within the
	template shown in Figure 1D
Ratio of the amplitudes of positive and negative	0.95 to 1.05
pulses at the center of the pulse interval	
Ratio of the widths of positive and negative	0.95 to 1.05
pulses at the nominal half amplitude	

T3 AIS STRUCTURE Figure 1E

M1	Subframe	
-----------	----------	--

	84		84		84		84		84		84		84		84
X1	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
(1)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M2 Subframe

Ī		84		84		84		84		84		84		84		84
	X2	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
	(1)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M3 Subframe

Ī		84		84		84		84		84		84		84		84
	P1	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
	(0)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M4 Subframe

Γ		84		84		84		84		84		84		84		84
	P2	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
	(0)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M5 Subframe

	84		84		84		84		84		84		84		84
M1	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
(0)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M6 Subframe

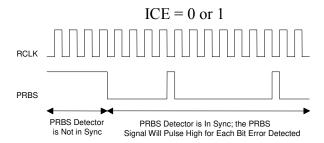
	84		84		84		84		84		84		84		84
M2	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
(1)	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

M7 Subframe

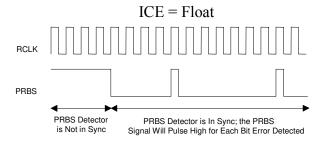
		84		84		84		84		84		84		84		84
M	[3	Info	F1	Info	C1	Info	F2	Info	C2	Info	F3	Info	C3	Info	F4	Info
(())	Bits	(1)	Bits	(0)	Bits	(1)	Bits								

NOTES:

X1 is transmitted first.


The 84 Info Bits are the sequence 101010... where the one ("1") starts after each X, P, F, C, or M bit.

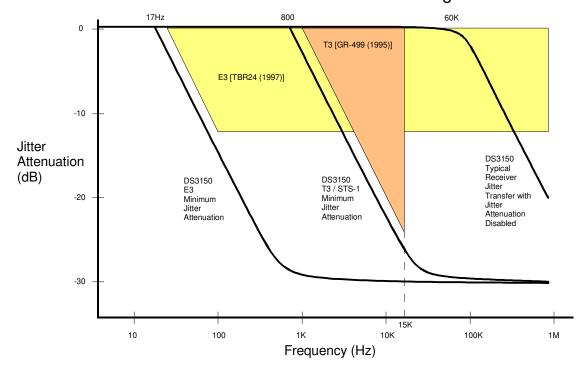
DIAGNOSTICS


The DS3150 contains an onboard Pseudo Random Binary Sequence (PRBS) generator and detector. This function is useful in testing the device at the physical layer. It will generate and detect either a $2^{15} - 1$ (T3 or STS-1) or $2^{23} - 1$ PRBS according to the ITU O.151 specification. The PRBS pattern generated and detected by the DS3150 is an unframed pattern. In other words, no T3, E3, or STS-1 framing patterns are inserted in the transmit data stream nor expected in the received data stream. The PRBS generator is enabled via the TDS0 and TDS1 inputs. See Tables 2A and 2B for details. The PRBS detector is always enabled and will report it's status via the PRBS output if signal EFE = 1. When the PRBS detector is out of synchronization, the PRBS output will be forced high. When the PRBS detector synchronizes to the incoming pseudorandom pattern, the PRBS output will go low and then pulse high for each bit detected in error. See Figures 1F and 1G. On the receive side, the recovered data is B3ZS/HDB3 decoded before it is routed to the PRBS decoder.

The DS3150 also has two internal loopbacks that can be used for testing. See Figure 1A. The Analog Loopback loops the outgoing transmit waveform back to the receiver. When this loopback is enabled, data will be transmitted as it normally would be and the incoming data at RX+ and RX- is ignored. The Remote Loopback loops data from the receive side to the transmit side. When this loopback is enabled, data will continue to pass through the receive side as it normally would and data at the TPOS and TNEG inputs is ignored. These two loopbacks are invoked via the LBKS* input. See Table 2A.

PRBS OUTPUT WITH NORMAL RCLK OPERATION Figure 1F

PRBS OUTPUT WITH INVERTED RCLK OPERATION Figure 1G


JITTER ATTENUATOR

The DS3150 contains an onboard jitter attenuator that can be placed in either the receive path or the transmit path or disabled. This selection is made via the RMON and TTS* input signals. See Table 1H below for details. Figure 1H shows the minimum jitter attenuation for the device when the jitter attenuator is enabled. Figure 1H also shows the receive jitter transfer when the jitter attenuator is disabled. Depending on whether the device is in the T3/STS-1 or E3 mode, the jitter attenuation will be adjusted. Note that for best results, a highly accurate clock source should be present at MCLK (or at TCLK if MCLK is tied high or left floating).

RMON & TTS* SIGNAL DECODE Table 1H

		Receive 20 dB	Transmit Line	
RMON	TTS*	Flat Gain	Driver	Jitter Attenuator
0	0	disabled	tri-stated	disabled
0	1	disabled	enabled	disabled
0	Float	disabled	enabled	enabled in TX path
1	0	enabled	tri-stated	disabled
1	1	enabled	enabled	disabled
1	Float	enabled	enabled	enabled in TX path
Float	0	disabled	tri-stated	enabled in RX path
Float	1	disabled	enabled	enabled in RX path
Float	Float	disabled	enabled	enabled in RX path

DS3150 JITTER ATTENUATION / JITTER TRANSFER Figure 1H

SECTION 2: SIGNAL DESCRIPTIONS

Table 2A below lists all of the signals on the DS3150 and their function. The signals are listed in alphabetical order. Section 4 shows the signal pin assignments for each package option.

SIGNAL DESCRIPTIONS Table 2A

		Table 2A
Signal	1/0	Description
Name DM*	I/O	Description Discription This signal arranged the states of the transmit
DM*	U	Driver Monitor (active low, open drain). This signal reports the status of the transmit
		driver monitor. When the transmit driver monitor detects a faulty transmitter, this
		pin is pulled low. This pin should have an external pull-up to V_{DD} . This signal is not
FFF	12	bonded out in the PLCC package.
EFE	I3	Enhanced Feature Enable. This signal enables the enhanced DS3150 features (PRBS
		generation/detection; transmit driver monitor; and transmission of all ones, T3 AIS or
		the 1010 pattern).
		0 = Enhanced Features Disabled: TDS0 and TDS1 ignored, PRBS/DM tri-stated
		1 = Enhanced Features Enabled: TDS0, TDS1 and PRBS/DM active
ICE	10	Float = Test Mode Enabled: TDS0, TDS1, LBO, LOS* redefined as test pins
ICE	I3	Invert Clock Enable. This signal determines on which RCLK edge RPOS and RNEG
		are updated and on which TCLK edge TPOS and TNEG are sampled.
		0 = Normal RCLK / Normal TCLK: update RPOS/RNRZ and RNEG on falling edge
		of RCLK and sample TPOS/TNRZ and TNEG on rising edge of TCLK
		1 = Normal RCLK / Inverted TCLK: update RPOS/RNRZ and RNEG on falling edge of RCLK and sample TPOS/TNRZ and TNEG on falling edge of TCLK
		Float = Inverted RCLK / Inverted TCLK: update RPOS/RNRZ & RNEG on rising edge of RCLK and sample TPOS/TNRZ and TNEG on falling edge of TCLK
LBKS*	I3	Loopback Select. This input determines if either the Analog Loopback or the
LDK9.	13	
		Remote Loopback is enabled. See the Block Diagram in Section 1 for details. 0 = Analog Loopback Enabled
		1 = No Loopback Enabled
		Float = Remote Loopback Enabled
LBO	I	Line Build-Out. This input indicates cable length for waveform shaping in DS3 and
LBO	1	STS-1 modes. LBO is ignored for E3 mode.
		0 = Cable length less than 225 feet.
		1 = Cable length greater than or equal to 225 feet.
LOS*	О	Loss Of Signal (active low). This signal will be asserted upon detection of 192±1
LOS		consecutive zeros. Signals lower than 21dB below nominal are squelched. LOS* is
		<u> </u>
		deasserted when there are no Excessive Zero occurrences over a span of 192±1 clock
		periods. An Excessive Zero occurrence is defined as 3 or more consecutive zeros in the T3 and STS-1 modes or 4 or more zeros in the E3 mode. Governing
		Specifications are ANSI T1.231 and ITU G.775.
MCLK	Ι	Master Clock. The clock input at this signal is used by the clock and data recovery
WICLK	1	
		machine. A T3 (44.736 MHz ± 20 ppm), E3 (34.368 MHz ± 20 ppm), or STS-1
		(51.840 MHz ± 20 ppm) clock should be applied at this signal. Tying this pin high or
		leaving it floating forces the device to use the clock applied at the TCLK input for the
		receive side clock and data recovery. Tying this pin low enables an internal
		oscillator. The frequency of this oscillator is determined by a resistor placed between
		OFSEL and VSS. MCLK has an internal 15 k Ω pull-up resistor to V_{DD} .

SIGNAL DESCRIPTIONS Table 2A (cont.)

SIGNAL	. DES	CRIPTIONS Table 2A (cont.)
PRBS	O3	PRBS Detector. This signal reports the status of the PRBS Detector. The PRBS detector will constantly search for either a 2 ¹⁵ – 1 (T3 or STS-1) or 2 ²³ – 1 (E3) psuedo random bit sequence. This signal will remain high when the PRBS detector is out of synchronization. When the PRBS detector syncs to the PRBS, this signal will go low and will create a high pulse (synchronous with RCLK) for each bit error detected. See Figures 1F and 1G for more details. If EFE = 0, then this signal is tristated. This signal is not bonded out in the PLCC package.
RCLK	O	Receive Clock. The recovered clock is output at this pin. When the DS3150 experiences a Loss Of Signal (LOS* = 0), the clock applied at MCLK (or TCLK if MCLK is high/floating or the internal oscillator if MCLK is tied low) appears at this signal. The recovered data is updated at the RPOS and RNEG outputs on either the falling edge of RCLK (ICE = 0 or 1) or the rising edge of RCLK (ICE = FLOAT).
RMON	13	Receive Monitor Mode. This input determines whether or not a 20 dB flat gain will be applied to the incoming signal before it is fed to the receive equalizer. This mode is invoked when the device is being used to monitor signals that have been resistively attenuated by a monitor jack. In this mode, the maximum input signal allowed at RX+ and RX- is reduced by 20 dB. This input also controls the jitter attenuator. See Table 2C. 0 = disable the 20 dB gain, disable RX jitter attenuation 1 = enable the 20 dB gain, disable RX jitter attenuation Float = disable the 20 dB gain, enable RX jitter attenuation
RNEG	0	Receive Negative Data. When the B3ZS/HBD3 encoder/decoder is disabled (ZCSE* = 1), this signal indicates reception of a negative AMI pulse. When the B3ZS/HDB3 encoder/decoder is enabled (ZCSE* = 0), this signal will be forced low and the NRZ data stream will be output at RPOS. This signal will be updated either on the rising edge of RCLK (ICE = Float) or the falling edge of RCLK (ICE = 0 or 1) with the recovered data stream.
RPOS/ RNRZ	O	Receive Positive or NRZ Data. When the B3ZS/HBD3 encoder/decoder is disabled (ZCSE* = 1), this signal indicates reception of a positive AMI pulse. When the B3ZS/HDB3 encoder/decoder is enabled (ZCSE* = 0), this signal will contain the recovered NRZ data stream. This signal will be updated either on the rising edge of RCLK (ICE = Float) or the falling edge of RCLK (ICE = 0 or 1) with the recovered data stream.
RX+ RX-	I	Receive Analog Inputs. These differential AMI inputs are coupled to the T3, STS-1, or E3 75Ω coax line via a 1:2 step-up transformer. See Figure 1B for details.
TCLK	I	Transmit Clock. A T3 (44.736 MHz \pm 20 ppm), E3 (34.368 MHz \pm 20 ppm) or STS-1 (51.840 \pm 20 ppm) clock should be applied at this signal. Data to be transmitted will be clocked into the device at TPOS/TNRZ and TNEG either on a rising edge of TCLK (ICE = 0) or falling edge of TCLK (ICE = 1 or FLOAT). The duty cycle on TCLK is not restricted as long it meets the high and low times listed in Section 3.
TDS0	I	Transmit Data Select Bit 0. If EFE = 1, this signal and signals TDS1 and TESS select the source of the transmit data (see Table 2B). If EFE = 0, this signal is ignored.

SIGNAL DESCRIPTIONS Table 2A (cont.)

SIGNAL	. DES	SCRIPTIONS Table 2A (cont.)
TDS1/	I	Transmit Data Select Bit 1 / Oscillator Frequency Select. If EFE = 1, this pin (TDS1)
OFSEL		and signals TDS0 and TESS select the source of the transmit data (see Table 2B). If
		MCLK is tied low, TDS1 is internally pulled low and a resistor connected between
		this pin (OFSEL) and ground determines the frequency of an internal oscillator. The
		following resistor values should be used for specific applications.
		Ε3: 6.81 kΩ
		T3: $5.23 \text{ k}\Omega$
		STS1: $4.53 \text{ k}\Omega$
		If EFE = 0, this signal is ignored.
TESS	I3	T3 / E3 / STS-1 Select. This input determines the mode of operation for the device.
ILSS	13	0 = E3
		1 = T3
		Float = STS-1
TNEG	I	Transmit Negative Data. For bipolar data, the B3ZS/HDB3 encoder/decoder should
TIVE	1	be disabled (ZCSE* = 1) and TNEG should be driven high to generate a negative
		AMI pulse on the coax. For NRZ data, the B3ZS/HDB3 encoder/decoder should be
		enabled ($ZCSE^* = 0$), the NRZ data stream should be applied to TNRZ, and TNEG is
		ignored and can be tied either high or low. TNEG is sampled either on the falling
		edge of TCLK (ICE = 1 or Float) or the rising edge of TCLK (ICE = 0).
TPOS/	I	Transmit Positive Data. For bipolar data, the B3ZS/HDB3 encoder/decoder should
TNRZ	•	be disabled (ZCSE* = 1) and TPOS should be driven high to generate a positive AMI
TIVICE		pulse on the coax. For NRZ data, the B3ZS/HDB3 encoder/decoder should be
		enabled ($ZCSE^* = 0$), the NRZ data stream should be applied to TNRZ, and TNEG is
		ignored and can be tied either high or low. TPOS/TNRZ is sampled either on the
		falling edge of TCLK (ICE = 1 or Float) or the rising edge of TCLK (ICE = 0).
TTS*	I3	Transmit Tri-State. This input determines whether the TX+ and TX- analog output
112		signals are forced into tri-state or are active. This input also controls the jitter
		attenuator. See Table 2C.
		0 = tri-state the transmit output driver, disable TX jitter attenuation
		1 = enable the transmit driver, disable TX jitter attenuation
		Float = enable the transmit driver, enable TX jitter attenuation
TX+	O3	Transmit Analog Outputs. These differential AMI outputs drive the T3, STS-1, or E3
TX-		signal into the 75Ω coax line. They are coupled to the coax line via a 2:1 step-down
		transformer. See Section 1 for details. These outputs can be tri-stated via the TTS*
		input signal.
$V_{ m DD}$	-	Positive Supply. $3.3V \pm 5\%$. All V_{DD} signals should be tied together.
VSS	-	Ground Reference. All VSS signals should be tied together.
ZCSE*	I	Zero Code Suppression Enable.
		0 = B3ZS/HDB3 encoder/decoder enabled (NRZ interface enabled)
		1 = B3ZS/HDB3 encoder/decoder disabled (NRZ interface disabled)

NOTES:

- I3 indicates an input capable of detecting 3 states, high, low and float. All I3 input have a 10 k Ω pull-up to 1.5V.
- O3 indicates an output that is tri-state capable.
- Symbols appended with an asterisks (*) are active low signals.

TRANSMIT DATA MODE SELECT PIN DESCRIPTIONS Table 2B

TDS1	TDS0	TESS	Transmit Mode Selected
0	0	X	Transmit data normally as input at TPOS and TNEG
0	1	X	Transmit Unframed All Ones
1	0	0 or float	Transmit an Unframed 101010 pattern
1	0	1	Transmit T3 AIS as per ANSI T1.107 (see Figure 1E)
1	1	0	Transmit a 2 ²³ – 1 PRBS pattern as per ITU O.151
1	1	1 or float	Transmit a 2 ¹⁵ – 1 PRBS pattern as per ITU O.151

NOTES:

TDS0 and TDS1 are ignored when EFE is tied low and the device will transmit TPOS / TNEG data

RMON & TTS* SIGNAL DECODE Table 2C

		Receive 20 dB	Transmit Line	
RMON	TTS*	Flat Gain	Driver	Jitter Attenuator
0	0	disabled	tri-stated	disabled
0	1	disabled	enabled	disabled
0	Float	disabled	enabled	enabled in TX path
1	0	enabled	tri-stated	disabled
1	1	enabled	enabled	disabled
1	Float	enabled	enabled	enabled in TX path
Float	0	disabled	tri-stated	enabled in RX path
Float	1	disabled	enabled	enabled in RX path
Float	Float	disabled	enabled	enabled in RX path

SECTION 3: AC CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Lead with Respect to VSS (except V_{DD})

Supply Voltage (V_{DD}) with Respect to VSS

Operating Temperature

-40°C to +85°C

Storage Temperature

-55°C to +125°C

Soldering Temperature See J-STD-020A specification

NOTE:

The typical values listed below are not production tested.

RECOMMEND DC OPERATING CONDITIONS

 $(-40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Logic 1	$V_{ m IH}$	2.4		5.5	V	
Logic 0	$V_{ m IL}$	-0.3		0.8	V	
Supply (V _{DD})	$V_{ m DD}$	3.135		3.465	V	

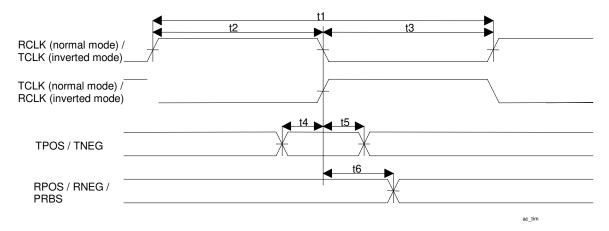
DC CHARACTERISTICS

 $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; VDD = 3.3V \pm 5\%)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Current ($V_{DD} = 3.465V$)	I_{DD}		TBD		mA	1
Power Down Current	I_{PD}		TBD		mA	2
$(V_{DD} = 3.465V)$						
Lead Capacitance	C _{IO}		7		pF	
Input Leakage	$ m I_{IL}$	-10		+10	uA	3
Input Leakage (w/ pull-ups or float)	IILP	-500		+500	uA	3
Output Current (2.4V)	I_{OH}	-4.0			mA	
Output Current (0.4V)	I_{OL}	+4.0			mA	

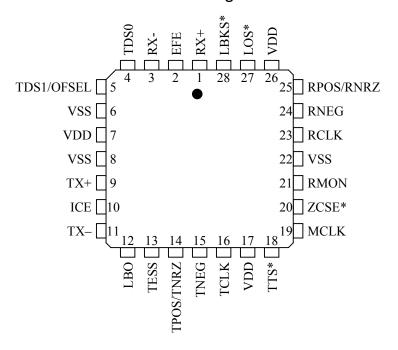
NOTES:

- 1. TCLK = MCLK = 44.736 MHz & TX+ and TX- driving all ones into a 75 Ω load / other inputs at V_{DD} or grounded / other outputs left open circuited
- 2. MCLK = 44.736 MHz & TTS* = 0 / other inputs at V_{DD} or grounded / other outputs left open circuited
- 3. $0V < V_{IN} < V_{DD}$
- 4. Outputs in Tri-State

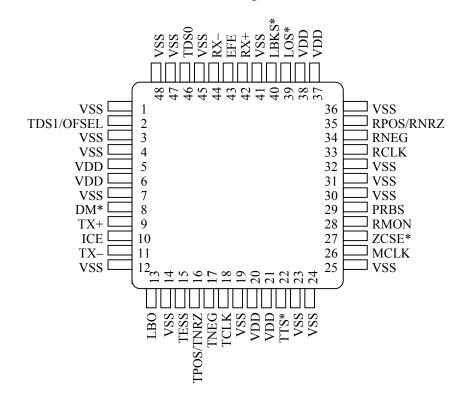

^{*} This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

AC CHARACTERISTICS - DI	(-	$(-40^{\circ}\text{C to } +85^{\circ}\text{C}; \text{VDD} = 3.3\text{V}\pm5\%)$				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
RCLK / TCLK Clock Period	t1		22.4		ns	1
	t1		29.1		ns	2
	t1		19.3		ns	3
RCLK Clock High / Low Time	t2 / t3	9.0	11.2	13.4	ns	1
	t2 / t3	11.6	14.5	17.4	ns	2
	t2 / t3	7.7	9.6	11.5	ns	3
TCLK Clock High / Low Time	t2 / t3	7			ns	
TPOS / TNEG to TCLK Setup Time	t4	2			ns	
TPOS / TNEG Hold Time	t5	2			ns	
RCLK to RPOS / RNEG Valid,	t6	2		6	ns	4, 5
Signal Change on PRBS						

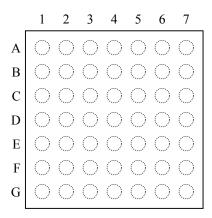
NOTES:


- 1. T3 Mode
- 2. E3 Mode
- 3. STS-1 Mode
- 4. In Normal Mode, TPOS and TNEG are sampled on the rising edge of TCLK and RPOS and RNEG are updated on the falling edge of RCLK
- 5. In Inverted Mode, TPOS and TNEG are sampled on the falling edge of TCLK and RPOS and RNEG are updated on the rising edge of RCLK

AC TIMING DIAGRAM Figure 3A

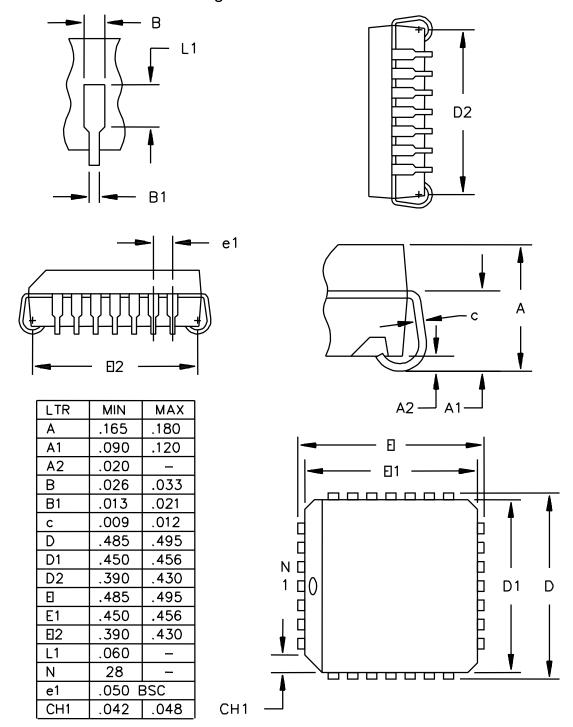


SECTION 4: PIN ASSIGNMENTS

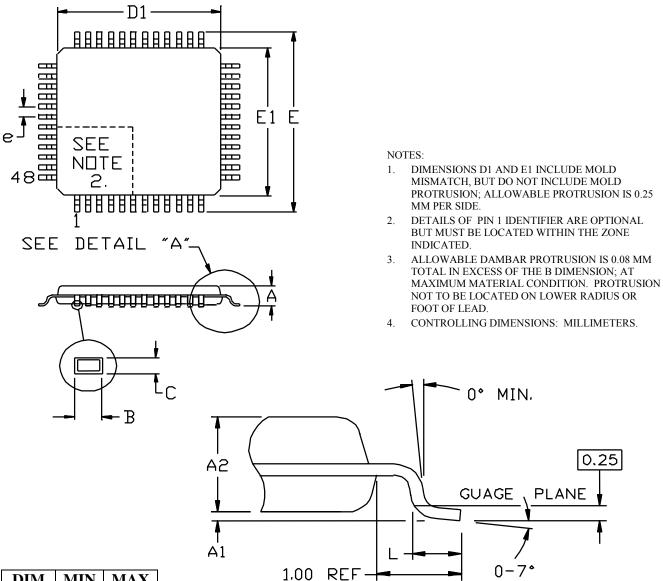

28-LEAD PLCC PIN ASSIGNMENT Figure 4A

48-LEAD TQFP PIN ASSIGNMENT Figure 4B

49-LEAD CSBGA PIN ASSIGNMENT Figure 4C

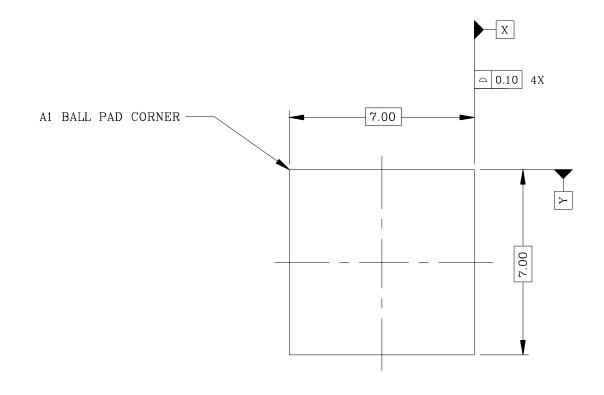


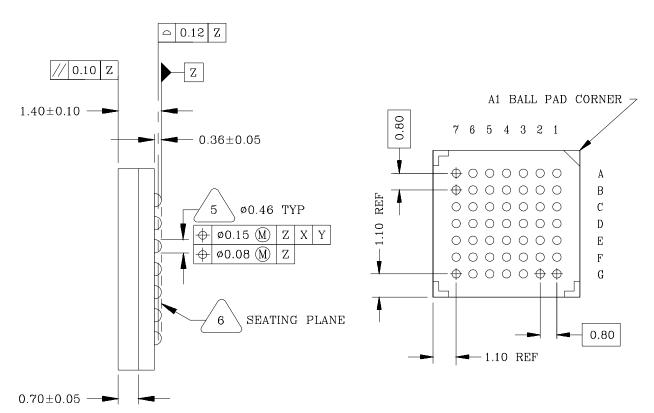
TOP VIEW


	1	2	3	4	5	6	7
A	NC	TDS0	RX-	RX+	LBKS*	NC	RPOS/
							RNRZ
В	VSS	NC	EFE	LOS*	VDD	RNEG	NC
C	VSS	NC	TDS1	NC	NC	NC	RCLK
D	DM*	VDD	NC	NC	PRBS	NC	VSS
Е	TX+	NC	NC	NC	NC	MCLK	RMON
F	TX-	ICE	LBO	TESS	TCLK	NC	ZCSE*
G	NC	NC	TPOS/	TNEG	VDD	TTS*	NC
			TNRZ				

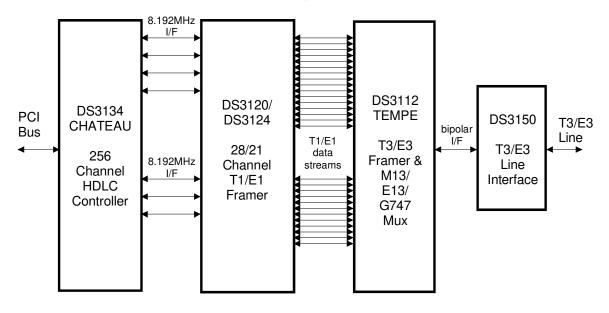
SECTION 5: MECHANICAL DIMENSIONS

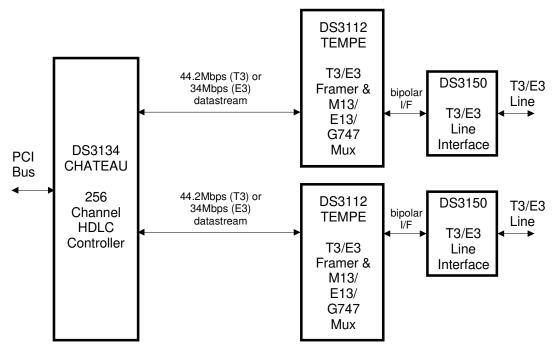
28-LEAD PLCC PACKAGE Figure 5A




48-LEAD TQFP PACKAGE Figure 5B

DIM	MIN	MAX		
A	-	1.20		
A1	0.05	0.15		
A2	0.95	1.05		
D	8.80	9.20		
D1	7.00	BSC		
Е	8.80	9.20		
E1	7.00	BSC		
L	0.45	0.75		
e	0.50	BSC		
В	0.17	0.27		
С	0.09	0.20		


49-LEAD CSBGA PACKAGE Figure 5C



SECTION 6: APPLICATIONS

CHANNELIZED T3/E3 APPLICATION Figure 6A

DUAL UNCHANNELIZED T3/E3 APPLICATION Figure 6B

