

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The DS4266 surface-mount ceramic crystal oscillator is part of Maxim's DS4-XO crystal oscillator product family. The DS4266 is a 266MHz crystal oscillator designed to support high-performance DDR memory applications that require a stable, low-jitter, and tight duty-cycle clock source. The device provides an overall accuracy and stability better than ±50ppm, including aging. Jitter performance is better than 0.7pspms typically over a 12kHz to 20MHz bandwidth, and duty-cycle performance is better than 48%/52%.

The DS4266 has an output frequency of 266MHz, and it supports LVDS and LVPECL output types. The DS4266 is constructed using a fundamental crystal in conjunction with high-performance silicon germanium PLL technology, enabling very low phase noise and phase jitter performance. The device operates from a 3.3V ±5% power supply and consumes a maximum current of 100mA.

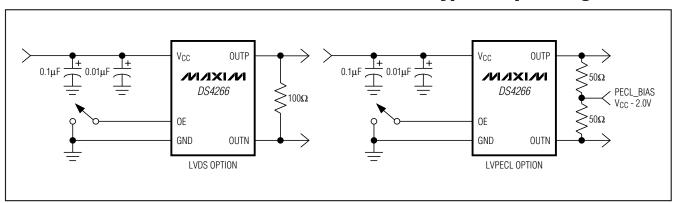
The DS4266 is packaged in a miniature 5mm x 3.2mm x 1.49mm, 10-lead LCCC ceramic package, making it suitable for applications where board space is critical.

Applications

DDR Memory Clock Source

Features

- ♦ < 0.7ps_{RMS} (typ) from 12kHz to 20MHz Jitter
- **♦ LVDS or LVPECL Output Types**
- **♦ 3.3V Operating Voltage**
- ♦ 5.0mm x 3.2mm x 1.49mm, 10-Pin LCCC Ceramic **Package**
- ♦ -40°C to +85°C Operating Temperature Range
- **♦ Lead-Free/RoHS Compliant**


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS4266D+	-40°C to +85°C	10 LCCC
DS4266P+	-40°C to +85°C	10 LCCC

+Denotes a lead(Pb)-free/RoHS-compliant package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Pin Configuration and Selector Guide appear at end of data sheet.

Typical Operating Circuits

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V _{CC})0.3V, +4V	Storage Temperature Range55°C to +85°C
Operating Temperature Range40°C to +85°C	Soldering Temperature Profile
Junction Temperature+150°C	(3 passes max of reflow)Refer to the IPC/JEDEC
	J-STD-020 Specification

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{CC} = 3.135V$ to 3.465V, $T_A = -40$ °C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	Vcc	(Note 1)	3.135	3.3	3.465	V
	ICC_D	LVDS, output loaded or unloaded		52	75	
Operating Current	ICC_PU	LVPECL, output unloaded		49	70	mA
	ICC_PI	LVPECL, output load 50Ω at V _{CC} - 2.0V		74	100	
Output Frequency	fout			fNOM		MHz
Oscillator Startup Time	tstartup	(Note 2)			50	ms
Frequency Stability	Δ f $TOTAL$	Over temperature range, aging, load, supply, and initial tolerance (Note 3)	-50	f _{NOM}	+50	ppm
Frequency Stability Over Temperature with Initial Tolerance	Δ f $ ext{TEMP}$	V _{CC} = 3.3V	-35		+35	ppm
Initial Tolerance	Δ finitial	V _{CC} = 3.3V, T _A = +25°C		±20		ppm
Frequency Change Due to ΔV _{CC}	Δ f $_{VCC}$	V _{CC} = 3.3V ±5%	-3		+3	ppm/V
Frequency Change Due to Load Variation	Δ f $_{LOAD}$	±10% variation in termination resistance		±1		ppm
Aging (15 Years)	Δ faging		-7		+7	ppm
		Integrated phase RMS; 12kHz to 5MHz, VCC = 3.3V, TA = +25°C		0.7		
Jitter	JRMS	Integrated phase RMS; 12kHz to 20MHz, V _{CC} = 3.3V, T _A = +25°C		0.7		ps
		Integrated phase RMS; 12kHz to 80MHz, $V_{CC} = 3.3V$, $T_A = +25^{\circ}C$		1.0		
Input-Voltage High (OE)	VIH	(Note 1)	0.7 x V _C C		Vcc	V
Input-Voltage Low (OE)	V _{IL}	(Note 1)	0		0.3 x V _C C	V
Input Leakage (OE)	I _{LEAK}	$GND \le OE \le V_{CC}$	-50		+5.0	μΑ

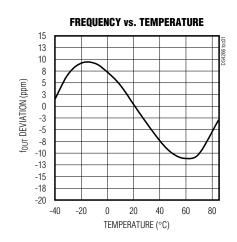
ELECTRICAL CHARACTERISTICS (continued)

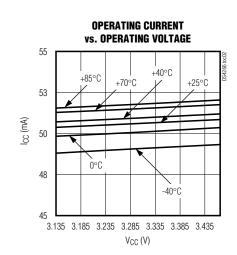
(V_{CC} = 3.135V to 3.465V, T_A = -40°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LVDS	1					•
Output High Voltage	Vohlvdso	100Ω differential load (Note 1)			1.475	V
Output Low Voltage	Vollydso	100Ω differential load (Note 1)	0.925			V
Differential Output Voltage	Vodlvdsol	100Ω differential load	250		425	mV
Output Common-Mode Voltage Variation	VLVDSOCOM	100Ω differential load			150	mV
Change in Differential Magnitude or Complementary Inputs	Δ V _{ODL} V _D SO	100Ω differential load			25	mV
Offset Output Voltage	Vofflydso	100Ω differential load (Note 1)	1.125		1.275	V
Differential Output Impedance	Rolvdso		80		140	Ω
Output Current	LVSSLVDSO	OUTN or OUTP shorted to ground and measure the current in the shorting path			40	mA
	LLVDSO	OUTN or OUTP shorted together		6.5]
Output Rise Time (Differential)	t _{RLVDSO}	20% to 80%		175		ps
Output Fall Time (Differential)	tFLVDSO	80% to 20%		175		ps
Duty Cycle	DCYCLE_LVDS		48		52	%
Propagation Delay from OE Going Low to Logical 1 at OUTP	tPA1				200	ns
Propagation Delay from OE Going High to Output Active	t _{P1A}				200	ns
LVPECL	1		1			•
Output High Voltage	VoH	Output connected to 50Ω at PECL_BIAS at V _{CC} - 2.0V	V _{CC} - 1.085		V _{CC} - 0.88	V
Output Low Voltage	V _{OL}	Output connected to 50Ω at PECL_BIAS at V _{CC} - 2.0V	V _{CC} - 1.825		V _{CC} -	V
Differential Voltage	VDIFF_PECL	Output connected to 50Ω at PECL_BIAS at V _{CC} - 2.0V	0.595	0.710		V
Rise Time	tr-pecl			200		ps
Fall Time	tF-PECL			200		ps
Duty Cycle	DCYCLE_PECL		48		52	%
Propagation Delay from OE Going Low to Output High Impedance	tpaz				200	ns
Propagation Delay from OE Going High to Output Active	[†] PZA				200	ns

Note 1: All voltages referenced to ground.

Note 2: AC parameters are guaranteed by design and not production tested.


Note 3: Frequency stability is calculated as: $\Delta f_{TOTAL} = \Delta f_{TEMP} + \Delta f_{VCC} \times (3.3 \times 5\%) + \Delta f_{LOAD} + \Delta f_{AGING}$.


Single-Sideband Phase Noise at fo = f_{NOM}

for -	SINGLE-SIDEBAND PHASE NOISE AT f _O = f _{NOM} (dBc/Hz)
f _M =	266MHz
10Hz	-65
100Hz	-95
1kHz	-113
10kHz	-113
100kHz	-118
1MHz	-137
10MHz	-149
20MHz	-153

Typical Operating Characteristics

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1	OE	Active-High Output Enable. Has an internal pullup 100kΩ resistor.
2, 7–10	N.C.	No Connection. Must be floated.
3	GND	Ground
4	OUTP	Positive Output for LVPECL or LVDS
5	OUTN	Negative Output for LVPECL or LVDS
6	Vcc	Supply Voltage
_	EP	Exposed Paddle. Do not connect this pad or place exposed metal under the pad.

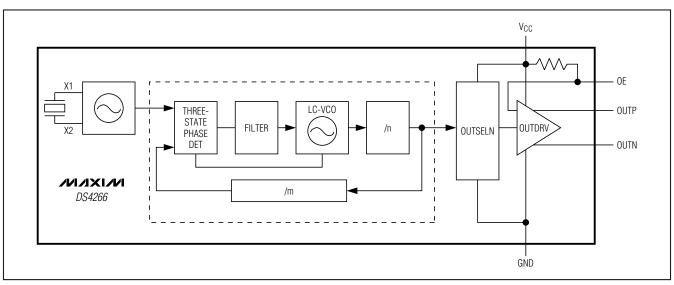


Figure 1. Functional Diagram

Detailed Description

The DS4266 consists of a fundamental-mode crystal and synthesizer IC packaged in a 5mm x 3.2mm x 1.49mm, 10-pin LCCC ceramic package. The device produces a frequency output of 266.00MHz. Two differential output types are available: LVDS and LVPECL. The device output can be enabled or disabled through the OE signal input. When the OE signal is low, LVPECL

outputs go to the PECL_BAS level of V_{CC} - 2.9V, while the LVDS outputs are a logical 1. See Figures 2 and 3 for LVDS and LVPECL output timing diagrams.

Additional Information

For more available frequencies in the DS4-XO family, refer to the DS4125 data sheet at www.maxim-ic.com/DS4125.

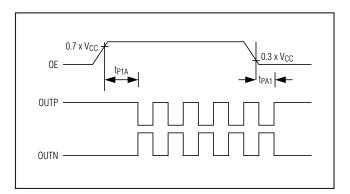
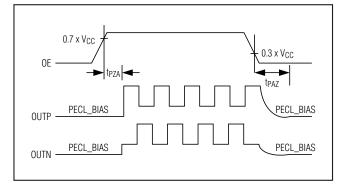
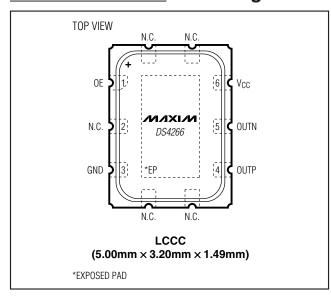


Figure 2. LVDS Output Timing Diagram When OE Is Enabled and Disabled




Figure 3. LVPECL Output Timing Diagram When OE Is Enabled and Disabled

Selector Guide

PART	FREQUENCY (NOM) (MHz)	FREQUENCY STABILITY (ppm)	OUTPUT TYPE	TOP MARK
DS4266D+	266	±50	LVDS	66D
DS4266P+	266	±50	LVPECL	66P

⁺Denotes a lead(Pb)-free/RoHS-compliant package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Pin Configuration

Chip Information

SUBSTRATE CONNECTED TO GROUND PROCESS: BiPOLAR SiGe

Thermal Information

THETA-JA (°C/W)	
90	

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 LCCC	L1053+H2	<u>21-0389</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.