

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The DS4625 is a dual-output, low-jitter clock oscillator capable of producing frequency output pair combinations ranging from 100MHz to 625MHz. The device combines an AT-cut crystal, an oscillator, and a lownoise phase-locked loop (PLL) in a 5.0mm x 3.2mm surface-mount LCCC package. Standard frequency options are listed in the Ordering Information/Selector Guide table. For custom frequency options, contact the factory at: Custom.Oscillators@maxim-ic.com.

The DS4625 provides dual, low-voltage, positive emitter-coupled logic (LVPECL) clock output drivers. The output drivers can be enabled and disabled through the OE pin, which is an active-high CMOS input that has an internal pullup resistor. When high, both output pairs are enabled.

The device operates from a single $+3.3V \pm 10\%$ supply. The operating temperature range is -40°C to +85°C.

Applications

XGMII Clock Oscillator InfiniBand^{TM/SM} SAS/SATA PCIe[®]

1GbE/10GbE

Features

- ♦ Standard Clock Output Frequencies: 100MHz, 125MHz, 150MHz, 156,25MHz, and 200MHz
- ♦ Phase Jitter < 0.7ps RMS (typical) from 12kHz to 20MHz
- **♦ LVPECL Output**
- ♦ +3.3V ±10% Operating Voltage
- ♦ -40°C to +85°C Temperature Range
- **♦ Excellent Power-Supply Noise Rejection**
- ♦ 5.0mm x 3.2mm Ceramic LCCC Package
- ♦ Output Enable/Disable

Ordering Information/Selector Guide

PART	TEMP RANGE	FREQUENCY (OP1:ON1) (MHz) (f _C)*	FREQUENCY (OP2:ON2) (MHz) (f _C)*	PIN-PACKAGE	TOP MARK
DS4625P+100/100	-40°C to +85°C	100.000	100.000	10 LCCC	6AA
DS4625P+100/150	-40°C to +85°C	100.000	150.000	10 LCCC	6AC
DS4625P+125/125	-40°C to +85°C	125.000	125.000	10 LCCC	6BB
DS4625P+125/156	-40°C to +85°C	125.000	156.250	10 LCCC	6BD
DS4625P+150/150	-40°C to +85°C	150.000	150.000	10 LCCC	6CC
DS4625P+150/200	-40°C to +85°C	150.000	200.000	10 LCCC	6CE

⁺Denotes a lead(Pb)-free/RoHS-compliant package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Pin Configuration and Typical Application Circuit appear at end of data sheet.

InfiniBand is a trademark and service mark of the InfiniBand Trade Association. PCIe is a registered trademark of PCI-SIG Corp.

^{*}Standard frequency options. Contact the factory at Custom.Oscillators@maxim-ic.com for custom frequencies.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to ground unless otherwise noted.)
Voltage Range on Any Pin Relative to Ground0.3V to +4.0V
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C

θJA	+90°C/W (Note 1)
Storage Temperature Range	
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using a two-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	Vcc		2.97	3.3	3.63	V
Input-Voltage High (OE)	VIH		0.7 x V _{CC}		Vcc	V
Input-Voltage Low (OE)	VIL		0		0.3 x V _C C	V

ELECTRICAL CHARACTERISTICS

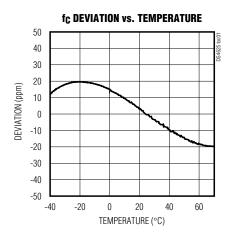
 $(V_{CC} = +2.97 \text{V to } +3.63 \text{V}, T_A = -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C}, \text{ typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25 ^{\circ} \text{C}, \text{ unless otherwise noted.})$ (Notes 2, 3)

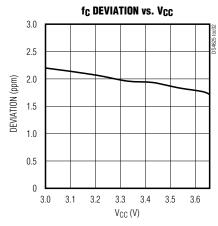
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
	ICC_PU	LVPECL, output unloaded		65	90	mA	
Operating Current	ICC_PL	LVPECL, output loaded		120	140	mA	
	ICC_OEZ	Voe = VIL		80	115	mA	
Output Fraguency	four1	VOF = VIH		fC		N/II→	
Output Frequency	four2	VOE = VIH				MHz	
Startup Time	tstart	(Note 4)		1.0		ms	
Frequency Stability	Δfτοταl/fc	Temperature, aging, load, supply, and initial tolerance (Note 5)	-50		+50	ppm	
Frequency Stability Over Temperature with Initial Tolerance	Δf _{TEMP} /f _C	V _{CC} = +3.3V	-35		+35	ppm	
Initial Tolerance	ΔfINITIAL/fC	V _{CC} = +3.3V, T _A = +25°C		±20		ppm	
Frequency Change Due to ΔV _{CC}	Δfvcc	$V_{CC} = +3.3V \pm 10\%, T_A = +25^{\circ}C$	-3		+3	ppm/V	
Frequency Change Due to Load Variation	Δf _{LOAD} /f _C	±10% variation in termination resistance		±1		ppm	
Aging (15 Years)	Δfaging/fc		-7		+7	ppm	
OE Pullup Resistance	R _{PU}	T _A = +25°C	70	100	130	kΩ	

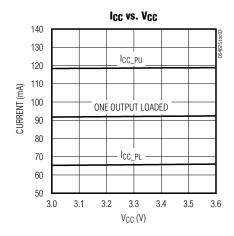
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.97 \text{V to } +3.63 \text{V}, T_A = -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C}, \text{ typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25 ^{\circ} \text{C}, \text{ unless otherwise noted.})$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH}	Output connected to 50Ω at PECL_BIAS at V _{CC} - 2.0V	V _{CC} - 1.085		V _{CC} - 0.88	V
Output Low Voltage	V _{OL}	Output connected to 50Ω at PECL_BIAS at VCC - 2.0V	V _{CC} - 1.825		V _{CC} - 1.62	V
Differential Output Voltage	IV _{OD} I	Output connected to 50Ω at PECL_BIAS at VCC - 2.0V	0.595	0.710		V
Output Rise Time	t _R	20% to 80%		200		ps
Output Fall Time	tϝ	80% to 20%		200		ps
Duty Cycle	DCYCLE		45		55	%
Propagation Delay from OE Going Low to Output High Impedance	tpaz	(See Figure 2)			100	ns
Propagation Delay from OE Going High to Output Active	tpza	(See Figure 2)			100	ns
Jitter	JRMS	Integrated phase RMS, 12kHz to 20MHz, $V_{CC} = +3.3V$, $T_A = +25^{\circ}C$		0.7		ps
Accumulated Deterministic Jitter Due to Reference Spurs		125.00MHz output, V _{CC} = +3.3V, T _A = +25°C		0.1		ps
		10kHz		12.9		ps
Accumulated Deterministic Jitter Due to Power-Supply Noise		100kHz		26.3		ps
(P-P) (Note 6)		200kHz		20.1		ps
		1MHz		6.4		ps


- **Note 2:** Limits at -40°C are guaranteed by design and are not production tested.
- **Note 3:** AC parameters are guaranteed by design and not production tested.
- **Note 4:** Startup time is from $V_{CC} = V_{CCMIN}$ until PLL locks to the crystal oscillator output.
- Note 5: Frequency stability is calculated as: $\Delta f_{TOTAL} = \Delta f_{TEMP} + \Delta f_{VCC} \times (3.3 \times 10\%) + \Delta f_{LOAD} + \Delta f_{AGING}$.
- Note 6: Supply-induced jitter is the deterministic jitter as measured on a LeCroy SDA11000 measured with a 50mV_{P-P} sine wave forced on V_{CC}.


SINGLE-SIDEBAND PHASE NOISE


SSB PHASE NOISE (dBc/Hz) (TYPICAL, +25°C, +3.3V)							
OFFSET	f _C = 100MHz	f _C = 125MHz	= 125MHz				
100Hz	-71	-85	-84	-79	-85		
1kHz	-116	-117	-116	-115	-113		
10kHz	-119	-118	-116	-117	-113		
100kHz	-126	-125	-122	-123	-120	dBc/Hz	
1MHz	-143	-142	-141	-140	-139		
10MHz	-151	-149	-149	-148	-149		
20MHz	-151	-150	-149	-149	-150		

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION
1	OE	Active-High Output Enable. Has an internal pullup resistor (RPU).
2, 3	GND	Ground
4	OP1	Positive Output 1 for LVPECL
5	ON1	Negative Output 1 for LVPECL
6	V _{CC}	Supply Voltage Input
A1, A2	N.C.	No Internal Connection. Must be connected to ground.
А3	OP2	Positive Output 2 for LVPECL
A4	ON2	Negative Output 2 for LVPECL
_	EP	Exposed Pad. The exposed pad must be used for thermal relief. This pad must be connected to ground.

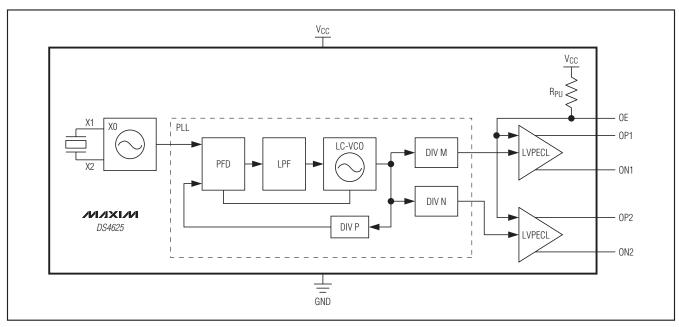


Figure 1. Block Diagram

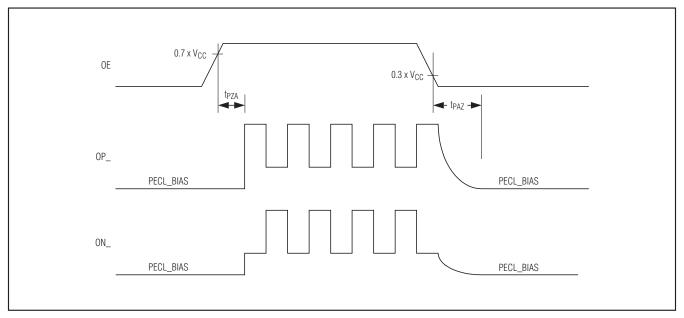
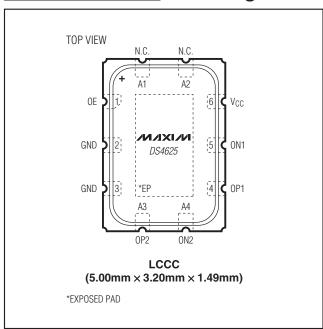



Figure 2. LVPECL Output Timing Diagram When OE is Enabled and Disabled

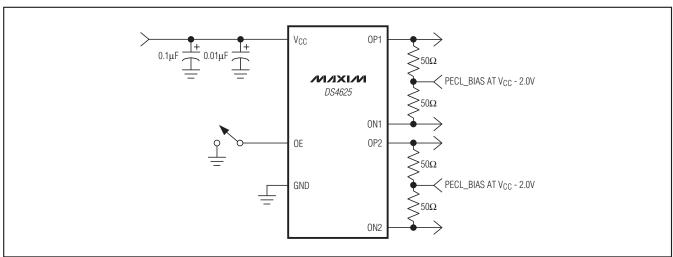
Pin Configuration

_Detailed Description

The DS4625 is a dual-output, low-jitter clock oscillator that produces frequency output pair combinations as shown in the *Ordering Information/Selector Guide* table. The phase relationship between the outputs is not guaranteed. The device combines an AT-cut, fundamental-mode crystal, an oscillator, and a low-noise PLL in a 5.0mm x 3.2mm surface-mount LCCC package.

The DS4625 provides dual LVPECL clock output drivers. The output drivers can be enabled and disabled through the OE pin. The OE pin is an active-high CMOS input that has an internal pullup resistor. When OE is high, both output pairs are enabled.

Chip Information


PROCESS: Bipolar SiGe

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 LCCC	L1053+H2	<u>21-0389</u>

Typical Application Circuit

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/09	Initial release.	_
1	3/10	Changed the operating temperature range limit from +70°C to +85°C, and added a new part number to the <i>Ordering Information</i> table.	1, 2, 3

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.