

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

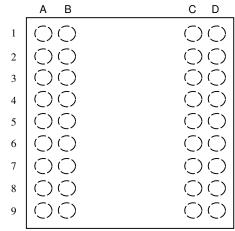
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DS76KHz 76.8 kHz TCXO

www.dalsemi.com

FEATURES

- Accurate to ± 7.5 ppm (-40°C to +85°C)
- Accurate to ± 2 ppm (0°C to 40°C)
- Battery back up for continuous output
- V_{BAT} operating voltage 2.7 to 5.5 volts (with V_{CC} grounded)
- V_{CC} operating voltage 4.5 to 5.5 volts
- Operating temperature range:


COM: 0°C to 70°C

IND: -40° C to $+85^{\circ}$ C

- No calibration required
- Low power consumption
- Surface mountable

V_{CC}: C2, C3, D2, D3 V_{BAT}: A4, A5, B4, B5 76KHz: C4, C5, D4, D5 GND: All Remaining Balls

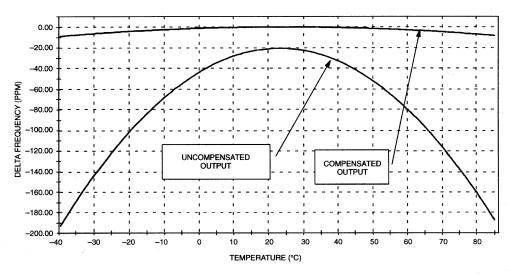
PIN ASSIGNMENT

DS76KHz 36-Pin SMD (TOP VIEW)

DESCRIPTION

The DS76KHz is a temperature-compensated crystal oscillator (TCXO) with an output frequency of 76.8 kHz. This device is available in commercial and industrial temperature versions, DS76KHz and DS76KHz-N respectively.

The DS76KHz requires four pins for operation: V_{CC} , GND, V_{BAT} and 76KHz OUT. See Figures 1, 2 and 3 for connection schemes. Power is applied via V_{CC} and GND, while V_{BAT} is used to maintain the 76KHz output in the absence of power. The output is accurate to ± 7.5 ppm from -40°C to +85°C and ± 2 ppm from 0°C to 40°C.


The DS76KHz is packaged in a small 36-pin SMD, utilizing Ball Grid Array (BGA) technology, with dimensions 0.400 inches wide, 0.450 inches long, and 0.180 inches high.

The recommended land pattern layout is shown on page 5.

The additional board space required is negligible in most applications and therefore the recommended land pattern layout should be implemented on all new designs and future board revisions to satisfy applications requiring better accuracy.

1 of 5 050599

DELTA FREQUENCY vs TEMPERATURE

POWER SUPPLY CONNECTIONS

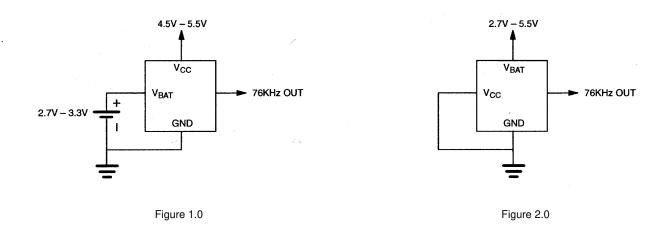
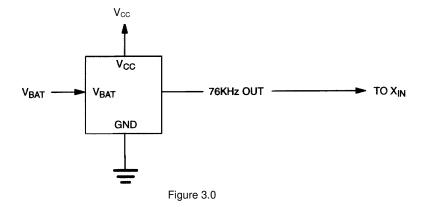



Figure 1.0 shows how the DS76KHz should be connected when using two power supplies. V_{CC} should be between 4.5 and 5.5 volts while V_{BAT} should be between 2.7 and 3.3 volts. Figure 2.0 shows how the DS76KHz can be used when only a single supply is available. V_{CC} should be grounded and V_{BAT} should then be held between 2.7 and 5.5 volts. The V_{BAT} pin should be connected directly to a battery using no external components. Figure 2.0 illustrates how the DS76KHz can be used in a single supply system.

DS76KHz CONNECTIONS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -3.0V to +7.0V

Operating Temperature 0°C to 70°C - Commercial

-40°C to +85°C - Industrial

Storage Temperature -40°C to +85°C

Soldering Temperature +260°C for 10 seconds (2 times max.)

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. The Dallas Semiconductor DS76KHz is built to the highest quality standards and manufactured for long term reliability.

All Dallas Semiconductor devices are made using the same quality materials and manufacturing methods. However, the DS76KHz is not exposed to environmental stresses, such as burn-in, that some industrial applications require. For specific reliability information on this product, please contact the factory in Dallas at (972) 371-4448.

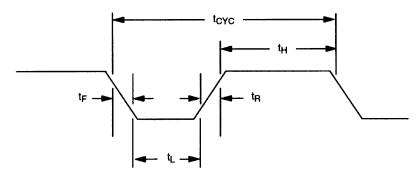
RECOMMENDED DC OPERATING CONDITIONS

(-40°C to +85°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	1
Battery Voltage	V_{BAT}	2.7	3.0	3.3, 5.5	V	1, 7

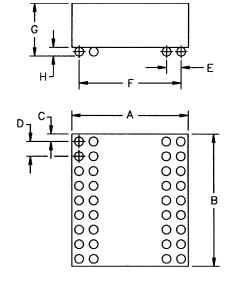
DC ELECTRICAL CHARACTERISTICS $(V_{CC}=4.5V \text{ to } 5.5V; -40^{\circ}\text{C to } +85^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Active Supply Current	I_{CC}		150	180	μΑ	2, 8
Active Battery Current	I_{BAT}		1	4	μΑ	3, 8
$(V_{CC}=0V, V_{BAT}=3.3V)$						
High Output Voltage	V_{OH}	2.4			V	6
I_{OH} =-1.0 mA)						
Low Output Voltage	V_{OL}			0.4	V	6
$(I_{OL}=2.1 \text{ mA})$						
Battery Switch Voltage	$ m V_{SW}$		V_{BAT}		V	

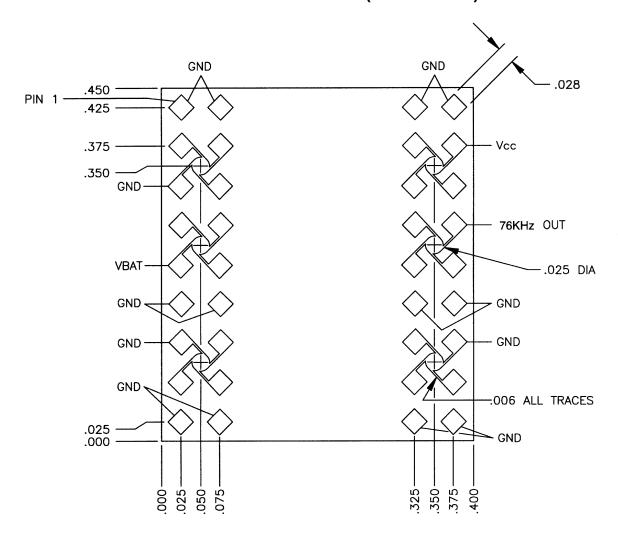

AC TIMING CHARACTERISTICS $(V_{CC} = 4.5 \text{V to } 5.5 \text{V}; -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

AO TIMINA OTIANAOTEMOTIO			$(\mathbf{v}_{00}) = \mathbf{v}_{00} $			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Output Frequency	f_{OUT}		76.8		kHz	
Frequency Stability vs Temp	$\Delta f/f_{\rm O}$		±2.0	±7.5	PPM	
(0°C to 40°C)			±7.5			
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						
Frequency Stability vs	$\Delta f/_{ m V}$		±1.0		ppm/ _V	
Operating Voltage						
Duty Cycle	T_W/T	45	50	55	%	
Cycle Time	t_{CYC}		13.021		μs	4
High/Low Time	t_H/t_L		6.31		μs	4
Rise Time	t_{R}		325		ns	4
Fall Time	t_{F}		75		ns	4
Oscillator Start-Up Time	t _{OSC}		150		ms	4

NOTES:


- 1. All voltages are referenced to ground.
- 2. Typical values are at +25°C and nominal supplies.
- 3. This current is the active mode current sourced from the backup supply/battery.
- 4. These parameters are measured using a 15 pF load.
- 5. DS76KHz-N is tested over the industrial temperature range to meet the specifications above.
- 6. These parameters are measured with V_{CC} on under nominal operating conditions.
- 7. When V_{CC} is grounded V_{BAT} can operate from 2.7V to 5.5V. Freq. stability will be affected in this operation, typically 1PPM/Volt above or below 3.0V.
- 8. These parameters are measured under no load conditions. The difference between I_{CC} and I_{BAT} is due to power switching circuitry.
- 9. Typical crystal aging is ± 1 ppm/yr after reflow.

76KHz OUTPUT WAVEFORM



MECHANICAL DIMENSIONS

PKG	36-PIN BALL GRID			
DIM	MIN	MAX		
A (in)	.395	.405		
B (in)	.445	.455		
C (in)	.022	.028		
D (in)	.047	.053		
E (in)	.047	.053		
F (in)	.347	.353		
G (in)	.170	.190		
H (in)	.025	.030		

RECOMMENDED LAND PATTERN LAYOUT (36-Pin BGA)

