: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description

The DS8005 dual smart card interface is a low-cost, dual analog front-end for an IC card reader interface that needs to communicate with two smart cards in a mutually exclusive fashion. The analog interface is designed for use in ISO 7816, EMV ${ }^{\circledR}$, and B-CAS applications. The device is functionally similar to two DS8024s with external multiplexing to select the active interface, but also includes low power and 1.8 V card support. Additionally, the device is designed for applications where the C4/C8 (AUX1/AUX2) contacts are not required on either card interface.
The device is provided in a 28-pin SO package. The pinout is backwards compatible with the DS8313, allowing applications to use the same footprint and PCB for applications that communicate with either one or two smart cards.
The device is designed to be used with microcontrollers that contain an ISO 7816 UART, or have the bandwidth to run this protocol in software by bit-banging IO ports. If the microcontroller does not have the capability of running the ISO 7816 UART, the DS8007 is the more appropriate product selection.

Applications

Set-Top Box Conditional Access
Telecommunications
Pay Television
Access Control
Financial Terminals

Smart Card Interface

	Features
Analog Interface and Level Shifting for IC Card	
Communication	
$\pm 8 \mathrm{kV}(\mathrm{min})$ ESD (HBM) Protection on Card Interfaces	
Ultra-Low Stop-Mode Current, Less than 10nA	
Typical	

- Internal IC Card Supply-Voltage Generation

$$
\begin{aligned}
& 5.0 \mathrm{~V} \pm 5 \%, 80 \mathrm{~mA}(\max) \\
& 3.0 \mathrm{~V} \pm 8 \%, 65 \mathrm{~mA}(\max) \\
& 1.8 \mathrm{~V} \pm 10 \%, 30 \mathrm{~mA}(\max)
\end{aligned}
$$

- Automatic Card Activation and Deactivation Controlled by Dedicated Internal Sequencer
- I/O Lines from Host Directly Level Shifted for Smart Card Communication
- Flexible Card Clock Generation, Supporting External Crystal Frequency Divided by 1, 2, 4, or 8
- High-Current, Short-Circuit and High-Temperature Protection
- Low Active-Mode Current
- Internal Multiplexing Allows One ISO 7816 UART Implementation to Control Two Smart Card Sockets

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS8005-RRX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SO

+Denotes a lead(Pb)-free/RoHS-compliant package.

Selector Guide

PART	CARD VOLTAGES SUPPORTED	LOW STOP-MODE POWER	LOW ACTIVE- MODE POWER	PRES_ POLARITY	VDDA INPUTS
$\mathrm{DS} 8005-\mathrm{RRX}+$	$1.8 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$	Yes	Yes	Positive	2

Typical Application Circuit appears at end of data sheet.

EMV is a registered trademark of EMVCo LLC.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: www.maxim-ic.com/errata.

Smart Card Interface

ABSOLUTE MAXIMUM RATINGS

Voltage Range on VDD Relative to GND -0.5 V to +6.5 V Voltage Range on VDDA Relative to GND -0.5 V to +6.5 V Voltage Range on CLKA, RSTA, I/OA-0.5V to (VCCA +0.5 V) Voltage Range on CLKB, RSTB, I/OB-0.5V to (VCCB +0.5 V) Voltage Range on All Other Pins
Relative to GND
\qquad -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. All specifications apply to the device, unless otherwise noted in the CONDITIONS column.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Digital Supply Voltage	VDD		2.7		6.0	V
Card Voltage-Generator Supply Voltage	VDDA	Must be \geq V DD	4.75		6.0	V
Reset Voltage Thresholds	$\mathrm{V}_{\text {TH2 }}$	Threshold voltage (falling)	2.20	2.45	2.65	V
	$\mathrm{V}_{\mathrm{HYS} 2}$	Hysteresis	50	100	200	mV
CURRENT CONSUMPTION						
Active VDD Current 5V Cards (Including 80mA Draw from 5V Card)	IDD_50V	$\begin{aligned} & \mathrm{ICC}=80 \mathrm{~mA}, \mathrm{fxTAL}=20 \mathrm{MHz}, \\ & \mathrm{fCLK}=10 \mathrm{MHz}, \mathrm{~V} \mathrm{DDA}=5.0 \mathrm{~V} \end{aligned}$		80.75	85	mA
Active VDD Current 5V Cards (Current Consumed by Device Only)	IDD_IC	$\begin{aligned} & \mathrm{ICC}=80 \mathrm{~mA}, \mathrm{fxTAL}=20 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DDA}}=5.0 \mathrm{~V}(\text { Note } 2) \end{aligned}$		0.75	5	mA
Active VDD Current 3V Cards (Including 65mA Draw from 3V Card)	IDD_30V	$\begin{aligned} & \mathrm{ICC}=65 \mathrm{~mA}, \mathrm{f} \times \mathrm{TAL}=20 \mathrm{MHz} \\ & \mathrm{f} \mathrm{CLK}=10 \mathrm{MHz}, \mathrm{~V} \text { DDA }=5.0 \mathrm{~V} \end{aligned}$		65.75	70	mA
Active VDD Current 3V Cards (Current Consumed by Device Only)	IDD_IC	$\begin{aligned} & \mathrm{ICC}=65 \mathrm{~mA}, \mathrm{fXTAL}=20 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DDA}}=5.0 \mathrm{~V}(\text { Note 2) } \end{aligned}$		0.75	5	mA
Active VDD Current 1.8V Cards (Including 30mA Draw from 1.8V Card)	IDD_18V	$\begin{aligned} & \mathrm{ICC}=30 \mathrm{~mA}, \mathrm{f} \times \mathrm{TAL}=20 \mathrm{MHz} \\ & \mathrm{fCLK}=10 \mathrm{MHz}, \mathrm{~V} \text { DDA }=5.0 \mathrm{~V} \end{aligned}$		30.75	40	mA
Active VDD Current 1.8V Cards (Current Consumed by Device Only)	IDD_IC	$\begin{aligned} & \mathrm{ICC}=30 \mathrm{~mA}, \mathrm{fXTAL}=20 \mathrm{MHz}, \\ & \mathrm{fCLK}=10 \mathrm{MHz}, V_{D D A}=5.0 \mathrm{~V}(\text { Note } 2) \end{aligned}$		0.75	5	mA
Inactive-Mode Current	IDD	Card inactive, active-high PRES_, device not in stop mode		50	400	$\mu \mathrm{A}$
Stop-Mode Current	IDD_STOP	Device in ultra-low-power stop mode ($\overline{\mathrm{CMDVCC}}, 5 \mathrm{~V} / \overline{3 \mathrm{~V}}$, and 1_8V set to logic 1) (Note 3)		0.01	2	$\mu \mathrm{A}$

Smart Card Interface

RECOMMENDED DC OPERATING CONDITIONS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. All specifications apply to the device, unless otherwise noted in the CONDITIONS column.) (Note 1)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK SOURCE							
Crystal Frequency		fxtal	External crystal (Note 1)	0		20	MHz
XTAL1 Operating Conditions		fxtal 1	(Note 1)	0		20	MHz
		VIL_XTAL1	Low-level input on XTAL1	-0.3		$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	
		$\mathrm{VIH}_{\text {_ }}$ XTAL1	High-level input on XTAL1	$\begin{gathered} 0.7 x \\ V_{D D} \end{gathered}$		$\mathrm{V}_{\mathrm{DD}}+$	
External Capacitance for Crystal		Cxtal1, Cxtal2				15	pF
Internal Oscillator		fint		2.2	2.7	3.4	MHz
SHUTDOWN TEMPERATURE							
Shutdown Temperature		TSD			+150		${ }^{\circ} \mathrm{C}$
RSTA AND RSTB PINS							
Card-Inactive Mode	Output Low Voltage	VoL_RST1	IOL_RST $=1 \mathrm{~mA}$			0.3	V
	Output Current	IOL_RST1	$\mathrm{V}_{\text {OL_RST }}=0 \mathrm{~V}$			-1	mA
Card-Active Mode	Output Low Voltage	VoL_RST2	IOL_RST $=200 \mu \mathrm{~A}$			0.3	V
	Output High Voltage	VOH_RST2	IOH_RST $=-200 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.5 \end{gathered}$			V
	Rise Time	tr_RST	$C_{L}=30 \mathrm{pF}$ (Note 1)			0.1	$\mu \mathrm{s}$
	Fall Time	tF_RST	$C L=30 \mathrm{pF}$ (Note 1)			0.1	$\mu \mathrm{s}$
	Current Limitation	IRST(LIMIT)		-20		+20	mA
	RSTIN to RST Delay	tD(RSTIN-RST)				2	$\mu \mathrm{s}$
CLKA AND CLKB PINS							
Card-Inactive Mode	Output Low Voltage	VOL_CLK1	I OLCLK $=1 \mathrm{~mA}$			0.3	V
	Output Current	IOL_CLK1	VOLCLK $=0 \mathrm{~V}$			-1	mA
Card-Active Mode	Output Low Voltage	VOL_CLK2	IOLCLK $=200 \mu \mathrm{~A}$			0.3	V
	Output High Voltage	VOH_CLK2	IOHCLK $=-200 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.5 \end{gathered}$			V
	Rise Time	tR_CLK	$C_{L}=30 \mathrm{pF}$ (Notes 1, 4)			8	ns
	Fall Time	tF_CLK	$C_{L}=30 \mathrm{pF}$ (Notes 1, 4)			8	ns
	Current Limitation	ICLK(LIMIT)		-75		+75	mA
	Clock Frequency	fCLK	Operational	0		10	MHz
	Duty Factor	δ	$C_{L}=30 \mathrm{pF}$	45		55	\%
	Slew Rate	SR	$C L=30 \mathrm{pF}$ (Note 1)	0.2			V / ns
$\mathrm{V}_{\text {cca }}$ AND $\mathrm{V}_{\text {ccb }}$ PINS							
Card-Inactive Mode	Output Low Voltage	VCC1	$\mathrm{ICC}=1 \mathrm{~mA}$			0.3	V
	Output Current	ICC1	$\mathrm{V}_{C C}=0 \mathrm{~V}$	0		-1	mA

Smart Card Interface

RECOMMENDED DC OPERATING CONDITIONS (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. All specifications apply to the device, unless otherwise noted in the CONDITIONS column.) (Note 1)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Card-Active Mode	Output Low Voltage	VCC2	Device: $\operatorname{IcC}(5 \mathrm{~V})<30 \mathrm{~mA}$, $V_{\text {DDA }}=4.75 \mathrm{~V}$ (Note 1)	4.65	5	5.25	V
			Device: $\operatorname{lcC}(5 \mathrm{~V})<80 \mathrm{~mA}$	4.75	5	5.25	
			Device: $\operatorname{ICC}(3 \mathrm{~V})<65 \mathrm{~mA}$	2.78	3	3.24	
			Device: $\operatorname{ICC}(1.8 \mathrm{~V})<30 \mathrm{~mA}$	1.64	1.8	1.98	
			5 V card; current pulses of 40 nC with I $<200 \mathrm{~mA}$, $\mathrm{t}<400 \mathrm{~ns}$, $\mathrm{f}<20 \mathrm{MHz}$	4.6		5.4	
			3 V card; current pulses of 24 nC with $\mathrm{I}<200 \mathrm{~mA}$, $\mathrm{t}<400 \mathrm{~ns}$, $\mathrm{f}<20 \mathrm{MHz}$	2.75		3.25	
			1.8 V card; current pulses of 12 nC with $\mathrm{I}<200 \mathrm{~mA}$, $\mathrm{t}<400 \mathrm{~ns}$, $\mathrm{f}<20 \mathrm{MHz}$	1.62		1.98	
	Output Current	ICC2	$\mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})=0$ to 5 V			-80	mA
			$\mathrm{V}_{\mathrm{CC}}(3 \mathrm{~V})=0$ to 3 V			-65	
			$\mathrm{V} \mathrm{CC}(1.8 \mathrm{~V})=0$ to 1.8 V			-30	
	Shutdown Current Threshold	ICC(SD)	(Note 1)		120		mA
	Slew Rate	VCCSR	Up/down; C < 300nF (Note 5)	0.05	0.16	0.22	V/hs
DATA LINES (I/O_AND I/OIN)							
I/O_ \Leftrightarrow I/OIN Falling Edge Delay		tD(IO-IOIN)	(Note 1)			200	ns
Pullup Pulse Active Time		tpu	(Note 1)			100	ns
Maximum Frequency		fiomax				1	MHz
Input Capacitance		Cl_{1}				10	pF
I/OA AND I/OB PINS							
Card-Inactive Mode	Output Low Voltage	V $\mathrm{OL}_{\text {_IO1 }}$	$\mathrm{IOL}_{\text {O }} \mathrm{IO}=1 \mathrm{~mA}$			0.3	V
	Output Current	IOL_IO1	$\mathrm{V}_{\text {OL_I }} \mathrm{O}=0 \mathrm{~V}$	0		-1	mA
	Internal Pullup Resistor	RPU_IO	To VCC	6	11	19	$k \Omega$
Card-Active Mode	Output Low Voltage	V $\mathrm{OL}_{\text {_IO2 }}$	IOL IO $=1 \mathrm{~mA}$			0.3	V
	Output High Voltage	VOH_IO2	1 OH -IO $=<-20 \mu \mathrm{~A}$	$0.8 \times \mathrm{V}_{\mathrm{CC}}$			V
			IOH -IO $=<-40 \mu \mathrm{~A}(3 \mathrm{~V} / 5 \mathrm{~V})$	$0.75 \times \mathrm{V} \mathrm{CC}$			
	Output Rise/Fall Time	tot	$C L=30 p F($ Note 1)			0.1	$\mu \mathrm{s}$
	Input Low Voltage	VIL_IO		-0.3		+0.8	V
	Input High Voltage	VIH_IO		1.5		VCC	

Smart Card Interface

RECOMMENDED DC OPERATING CONDITIONS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. All specifications apply to the device, unless otherwise noted in the CONDITIONS column.) (Note 1)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Card-Active Mode	Input Low Current	IIL_IO	$\mathrm{V}_{\text {IL_I }} \mathrm{IO}=0 \mathrm{~V}$			700	$\mu \mathrm{A}$
	Input High Current	IIH_IO	$\mathrm{V}_{\mathrm{IH} \text {-IO }}=\mathrm{V}_{\text {CC }}$	-20		+20	$\mu \mathrm{A}$
	Input Rise/Fall Time	tit				1.2	$\mu \mathrm{s}$
	Current Limitation	IIO(LIMIT)	$C_{L}=30 \mathrm{pF}$	-15		+15	mA
I/OIN PIN							
Output Low Voltage		VOL	$\mathrm{IOL}=1 \mathrm{~mA}$			0.3	V
Output High Voltage		VOH	IOH <-40 ${ }^{\text {A }}$	$\begin{gathered} 0.75 x \\ V_{D D} \end{gathered}$		$\begin{gathered} V_{D D}+ \\ 0.1 \end{gathered}$	V
Output Rise/Fall Time		tot	CL = 30pF, 10\% to 90\%			0.1	$\mu \mathrm{s}$
Input Low Voltage		VIL		-0.3		$\begin{gathered} +0.3 x \\ V_{D D} \end{gathered}$	V
Input High Voltage		VIH		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		$\begin{gathered} V_{D D}+ \\ 0.3 \end{gathered}$	V
Input Low Current		IIL_IO	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$			700	$\mu \mathrm{A}$
Input High Current		IIH_IO	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	-10		+10	$\mu \mathrm{A}$
Input Rise/Fall Time		tit	$\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$			1.2	$\mu \mathrm{s}$
Integrated Pullup Resistor		RPU	Pullup to V_{DD}	6	11	19	k Ω
CONTROL PINS (CLKDIV1, CLKDIV2, $\overline{\text { CMDVCC, }}$ RSTIN, 5V/3V, $\left.1 _8 \mathrm{~V}\right)$							
Input Low Voltage		VIL		-0.3		$\begin{gathered} +0.3 x \\ V_{D D} \end{gathered}$	V
Input High Voltage		V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$		$\begin{gathered} V_{D D}+ \\ 0.3 \end{gathered}$	V
Input Low Current		IIL_IO	$0<\mathrm{V}_{\text {IL }}<\mathrm{V}_{\text {DD }}$	-5		+5	$\mu \mathrm{A}$
Input High Current		IIH_IO	$0<\mathrm{V}_{\text {IH }}<\mathrm{V}_{\text {DD }}$	-5		+5	$\mu \mathrm{A}$
INTERRUPT OUTPUT PINS ($\overline{\text { OFF }}$ AND $\overline{\text { OFF2 }}$)							
Output Low Voltage		VOL	$\mathrm{IOL}=2 \mathrm{~mA}$			0.3	V
Output High Voltage		VOH	$\mathrm{IOH}=-15 \mu \mathrm{~A}$	$\begin{gathered} 0.75 \times \\ V_{D D} \end{gathered}$			V
Integrated Pullup Resistor		RPU	Pullup to VDD	12	24	38	k Ω
PRESA AND PRESB PINS							
Input Low Voltage		VIL_PRES				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Input High Voltage		VIH_PRES		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Input Low Current		IIL_PRES	$\mathrm{V}_{\text {IL_PRES }}=0 \mathrm{~V}$	-5		+5	$\mu \mathrm{A}$
Input High Current		IIH_PRES	$\mathrm{V}_{\text {IH_PRES }}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$

Smart Card Interface

RECOMMENDED DC OPERATING CONDITIONS (continued)
$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. All specifications apply to the device, unless otherwise noted in the CONDITIONS column.) (Note 1)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING							
Activation Time		tact		50	160	220	$\mu \mathrm{s}$
Deactivation Time		tDEACT		50	80	100	$\mu \mathrm{s}$
CLK_ to Card Start Time	Window Start	t3		50	95	130	$\mu \mathrm{s}$
	Window End	t5		140	160	220	
PRES Debounce Time		tDEBOUNCE		5	8	11	ms

Note 1: Operation guaranteed at $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ but not tested.
Note 2: IDD_IC measures the amount of current used by the device to provide the smart card current minus the load.
Note 3: Stop mode is enabled by setting $\overline{C M D V C C}, 5 \mathrm{~V} / \overline{3 \mathrm{~V}}$, and $1 _8 \mathrm{~V}$ to a logic-high.
Note 4: Parameters are guaranteed to meet all ISO 7816, GSM11-11, and EMV 2000 requirements. For the 1.8 V card, the maximum rise and fall time is 10 ns .
Note 5: Parameter is guaranteed to meet all ISO 7816, GSM11-11, and EMV 2000 requirements. For the 1.8 V card, the minimum slew rate is $0.05 \mathrm{~V} / \mu \mathrm{s}$ and the maximum slew rate is $0.5 \mathrm{~V} / \mu \mathrm{s}$.
\qquad

Smart Card Interface

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1, 2	CLKDIV1, CLKDIV2	Clock Divider. Determines the divided-down input clock frequency (presented at XTAL1 or from a crystal at XTAL1 and XTAL2) on the CLK_ output pin. Dividers of 1, 2, 4, and 8 are available.
3	$5 \mathrm{~V} / 3 \mathrm{~V}$	$5 \mathrm{~V} / 3 \mathrm{~V}$ Selection Pin. Allows selection of 5 V or 3 V for communication with an IC card. Logic-high selects 5 V operation; logic-low selects 3 V operation. The $1 _8 \mathrm{~V}$ pin overrides the setting on this pin if active. See Table 3 for a complete description of choosing card voltages.
4	1_8V	1.8 V Operation Selection. This active-high input puts the device into 1.8 V smart card communication mode. The selected interface (when activated) powers a card with a 1.8 V supply and all I/O lines operate at 1.8 V .
5	VCCB	Smart Card Supply Voltage, Interface B. Decouple to CGND (card ground) with $2 \times 100 \mathrm{nF}$ or $100+$ 200nF capacitors (ESR < 100ms).
6	VDDA	Smart Card Interface Supply. 5V power supply for powering the card interface.
7	RSTB	Smart Card Reset, Interface B. Card reset output from contact C2.
8	CLKB	Smart Card Clock, Interface B. Card clock, contact C3.
9, 14	CGND	Smart Card Ground
10	PRESA	Interface A Card Presence Indicator. Active-high card presence input for the first card interface. When the presence indicator becomes active, a debounce timeout begins. After 8 ms (typ), the $\overline{\text { OFF }}$ signal becomes active if the first card interface is selected (SEL_AB low), else the OFF2 signal becomes active.
11	I/OA	Smart Card Data-Line Output, Interface A. Card data communication line, contact C7. This pin is only active if the first card interface is selected (SEL_AB low) and the interface has gone through an activation sequence.

Smart Card Interface

PIN	NAME	FUNCTION
12	I/OB	Smart Card Data-Line Output, Interface B. Card data communication line, contact C7. This pin is only active if the second card interface is selected (SEL_AB high) and the interface has gone through an activation sequence.
13	PRESB	Interface B Card Presence Indicator. Active-high card presence input for the second card interface. When the presence indicator becomes active, a debounce timeout begins. After 8ms (typ), the $\overline{\mathrm{OFF}}$ signal becomes active if the second card interface is selected (SEL_AB high), else the OFF2 signal becomes active.
15	CLKA	Smart Card Clock, Interface A. Card clock, contact C3.
16	RSTA	Smart Card Reset, Interface A. Card reset output from contact C2.
17	VCCA	Smart Card Supply Voltage, Interface A. Decouple to CGND (card ground) with $2 \times 100 \mathrm{nF}$ or $100+$ 220nF capacitors (ESR < 100ms).
18	VDDA2	Smart Card Interface Supply. 5V power supply for powering the card interface. While this pin is not required to be connected to 5 V (it can be left not connected (N.C.)), it is recommended for the best performance when delivering power to a 5 V smart card.
19	CMDVCC	Activation Sequence Initiate. Active-low input from host.
20	RSTIN	Card Reset Input. Reset input from the host.
21	VDD	Supply Voltage
22	GND	Digital Ground
23	$\overline{\text { OFF }}$	Status Output for Selected Interface. Active-low interrupt output to the host. Includes a $20 \mathrm{k} \Omega$ integrated pullup resistor to $V_{D D}$. This pin reflects fault events and PRES_ events on the currently selected interface only (behaving as if it were a DS8024 with only one interface). The OFF2 pin should be used to monitor presence events on the nonselected interface.
24, 25	XTAL1, XTAL2	Crystal/Clock Input. Connect an input from an external clock to XTAL1 or connect a crystal across XTAL1 and XTAL2.
26	I/OIN	I/O Input. Host-to-interface chip data I/O line.
27	OFF2	Status Output for Nonselected Interface. This pin passes through the presence signal for the nonselected interface. If SEL_AB is low (the A interface is selected), this pin reflects the state of the PRESB input. If SEL_AB is high (the B interface is selected), this pin reflects the state of the PRESA input.
28	SEL_AB	Interface Selection. This pin selects the interface the input pins (I/OIN, RSTIN, etc.) communicate with and control. If SEL_AB is low, the A interface is selected. Activation sequences power up VCCA and communication occurs with CLKA, I/OA, and RSTA. If SEL_AB is high, the B interface is selected. Both interfaces can be powered and clocking at the same time. See the Switching A / B Interfaces section for more information.

Smart Card Interface

Figure 1. Functional Diagram

Detailed Description

The DS8005 is an analog front-end for communicating with $1.8 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V dual smart cards. It is a dual input-voltage device, requiring one supply to match that of a host microcontroller and a separate +5 V supply for generating correct smart card supply voltages. The device translates all communication lines to the correct voltage level and provides power for smart card operation. It is a low-power device, consuming very little current in active-mode operation (during a smart card communication session), and is suitable for use in battery-powered devices such as laptops and PDAs, consuming only 10 nA in stop mode. The device is designed for applications that do not require communication using the C4 and C8 card contacts (AUX1 and AUX2). It is suitable for SIM/SAM interfacing, as well as for applications where only the I/O line is used to communicate with a smart card.

Power Supply

The device has dual supplies. The supply pins for the device are VDD, GND, and VDDA. VDD should be in the 2.7 V to 6.0 V range, and is the supply for signals that interface with the host controller. It should, therefore, be the same supply as used by the host controller. All smart card contacts remain inactive during power-on or power-off. The internal circuits are kept in the reset state until VDD reaches $\mathrm{V}_{T H} 2+\mathrm{V}_{\mathrm{HYS}}$ and for the duration of the internal power-on reset pulse, tw. A deactivation sequence is executed when VDD falls below VTH2.
An internal regulator generates the 1.8 V , 3 V , or 5 V card supply voltage (VCC_). The regulator should be supplied separately by VDDA. VDDA should be connected to a minimum 4.75 V supply to provide the correct supply voltage for 5 V smart cards.

Smart Card Interface

Voltage Supervisor

The voltage supervisor monitors the VDD supply. A $220 \mu \mathrm{~s}$ reset pulse (tw) is used internally to keep the device inactive during power-on or power-off of the VDD supply. See Figure 2.
The IC card interface remains inactive regardless of the levels on the command lines until duration tw after VDD has reached a level higher than $\mathrm{V}_{T H 2}+\mathrm{V}_{\text {HYS2 }}$. When $V_{D D}$ falls below $V_{T H 2}$, the device executes a card deactivation sequence if the card interface is active.

Clock Circuitry

The card clock signal (CLKA/CLKB) is derived from a clock signal input to XTAL1 or from a crystal operating at up to 20 MHz connected between XTAL1 and XTAL2. The output clock frequency of CLK_ is selectable through inputs CLKDIV1 and CLKDIV2. The CLK signal frequency can be fxtal, fxtal/2, fxtal/4, or fxtal/8. See Table 1 for the frequency generated on the CLK_ signal given the inputs to CLKDIV1 and CLKDIV2.
Note that CLKDIV1 and CLKDIV2 must not be changed simultaneously; a delay of 10 ns minimum between changes is needed. The minimum duration of any state of CLK_ is eight periods of XTAL1.
Table 1. Clock Frequency Selection

CLKDIV1	CLKDIV2	fcLK
0	0	fXTAL/8
0	1	fXTAL/4
1	1	fXTAL/2
1	0	fXTAL

The frequency change is synchronous: during a transition of the clock divider, no pulse is shorter than 45% of the smallest period, and the first and last clock pulses about the instant of change have the correct width. When changing the frequency dynamically, the change is effective for only eight periods of XTAL1 after the command.
The fXTAL duty factor depends on the input signal on XTAL1. To reach a 45% to 55% duty factor on CLK_, XTAL1 should have a 48% to 52% duty factor with transition times less than 5% of the period.
With a crystal, the duty factor on CLK_ can be 45% to 55% depending on the circuit layout and on the crystal characteristics and frequency. In other cases, the duty factor on CLK_ is guaranteed between 45% and 55% of the clock period.

I/O Transceivers

I/O_ and I/OIN are pulled high with an $11 \mathrm{k} \Omega$ resistor (I/O_ to VCC_ and I/OIN to VDD) in the inactive state. The first side of the transceiver to receive a falling edge becomes the master. When a falling edge is detected (and the master is decided), the detection of falling edges on the line of the other side is disabled; that side then becomes a slave. After a time delay $\operatorname{tD}(E D G E)$, an n transistor on the slave side is turned on, thus transmitting the logic 0 present on the master side.
When the master side asserts a logic 1, a p transistor on the slave side is activated during the time delay tpu and then both sides return to their inactive (pulled up) states. This active pullup provides fast low-to-high transitions. After the duration of tpu, the output voltage depends only on the internal pullup resistor and the

Figure 2. Voltage Supervisor Behavior

Smart Card Interface

load current. Current to and from the card I/O lines is limited internally to 15 mA . The maximum frequency on these lines is 1 MHz .

Inactive Mode

The device powers up with the card interface in the inactive mode. Minimal circuitry is active while waiting for the host to initiate a smart card session.

- All card contacts are inactive (approximately 200Ω to GND).
- The I/OIN pin in the high-impedance state ($11 \mathrm{k} \Omega$ pullup resistor to $V_{D D}$).
- Voltage generators are stopped.
- XTAL oscillator is running (if included in the device).
- Voltage supervisor is active.
- The internal oscillator is running at its low frequency.

Activation Sequence
After power-on and the reset delay, the host microcontroller can monitor card presence with signals $\overline{\mathrm{OFF}}$ and CMDVCC, as shown in Table 2.

If the card is in the reader (if PRES_ is active), the host microcontroller can begin an activation sequence (start a card session) by pulling CMDVCC low. The following events form an activation sequence (Figure 3):

1) $\overline{\text { CMDVCC }}$ is pulled low.
2) The internal oscillator changes to high frequency (to).
3) The voltage generator is started (between to and t_{1}).

Table 2. Card Presence Indication

SEL_AB	$\overline{\text { OFF }}$	$\overline{\text { CMDVCC }}$	STATUS
Low	High	High	Card A present.
Low	Low	High	Card A not present.
High	High	High	Card B present.
High	Low	High	Card B not present.
SEL_AB	$\overline{\text { OFF2 }}$	$\overline{\text { CMDVCC }}$	STATUS
Low	High	High	Card B present.
Low	Low	High	Card B not present.
High	High	High	Card A present.
High	Low	High	Card A not present.

Figure 3. Activation Sequence Using RSTIN and $\overline{\text { CMDVCC }}$

Smart Card Interface

4) V_{CC} _ rises from 0 to $5 \mathrm{~V}, 3 \mathrm{~V}$, or 1.8 V with a controlled slope ($\mathrm{t}_{2}=\mathrm{t}_{1}+1.5 \times \mathrm{T}$). T is 64 times the internal oscillator period (approximately $25 \mu \mathrm{~s}$).
5) I/O_ pin is enabled ($\mathrm{t}_{3}=\mathrm{t}_{1}+4 \mathrm{~T}$) (they were previously pulled low).
6) The CLK_ signal is applied to the C3 contact (t 4).
7) $R S T_{-}$is enabled ($\left.t_{5}=t_{1}+7 T\right)$.

To apply the clock to the card interface:

1) Set RSTIN high.
2) Set $\overline{\mathrm{CMDVCC}}$ low.
3) Set RSTIN low between ts and t5; CLK_ now starts.
4) RST_ stays low until t5, then RST becomes the copy of RSTIN.
5) RSTIN has no further effect on CLK_ after t5.

If the applied clock is not needed, set CMDVCC low with RSTIN low. In this case, CLK_ starts at t3 (minimum 200ns after the transition on I/O; see Figure 4); after t5, RSTIN can be set high to obtain an answer to request (ATR) from an inserted smart card. Do not perform activation with RSTIN held permanently high.

Active Mode

When the activation sequence is completed, the card interface is in active mode. The host microcontroller and the smart card exchange data on the I/O lines.

Deactivation Sequence

When a session is completed, the host microcontroller sets the CMDVCC line high to execute an automatic deactivation sequence and returns the card interface to the inactive mode (Figure 5).

1) $R S T_{-}$goes low (t_{10}).
2) CLK_ is held low $\left(\mathrm{t}_{12}=\mathrm{t}_{10}+0.5 \times \mathrm{T}\right)$ where T is 64 times the period of the internal oscillator (approximately $25 \mu \mathrm{~s}$).
3) I / O_{-}pin is pulled low $\left(t_{13}=t_{10}+T\right)$.
4) VCC starts to fall $\left(\mathrm{t}_{14}=\mathrm{t}_{10}+1.5 \times \mathrm{T}\right)$.
5) When $V_{C C}$ _ reaches its inactive state, the deactivation sequence is complete (at tDE).
6) All card contacts become low impedance to GND; I/OIN remains at VDD (pulled up through an $11 \mathrm{k} \Omega$ resistor).
7) The internal oscillator returns to its lower frequency.

Vcc Generator

Each VCC_ generator has a capacity to supply up to 80 mA continuously at $5 \mathrm{~V}, 65 \mathrm{~mA}$ at 3 V , and 30 mA at
1.8 V . An internal overload detector triggers at approximately 120 mA . Current samples to the detector are filtered. This allows spurious current pulses (with a duration of a few $\mu \mathrm{s}$) up to 200 mA to be drawn without causing deactivation. The average current must stay below the specified maximum current value. To maintain VCC voltage accuracy, a 100nF capacitor (with an ESR $<100 \mathrm{~m} \Omega$) should be connected to CGND and placed near the VCC_ pin, and a 100 nF or 220 nF capacitor (220 nF is the best choice) with the same ESR should be connected to CGND and placed near the smart card reader's C1 contact.

Fault Detection

The following fault conditions are monitored:

- Short-circuit or high current on VCC_
- Removal of a card during a transaction
- VDD dropping
- Card voltage generator operating out of the specified values (VDDA too low or current consumption too high)
- Overheating

There are two different cases (Figure 6):

- CMDVCC High Outside a Card Session. Output $\overline{\text { OFF_ }}_{-}$is low if a card is not in the card reader and high if a card is in the reader. The VDD supply is mon-itored-a decrease in input voltage generates an internal power-on reset pulse but does not affect the $\overline{\mathrm{OFF}}_{-}$signal. Short-circuit and temperature detection is disabled because the card is not powered up.
- CMDVCC Low Within a Card Session. Output OFFgoes low when a fault condition is detected, and an emergency deactivation is performed automatically (Figure 7). When the system controller resets $\overline{\mathrm{CMD}}$ $\overline{\text { VCC }}$ to high, it may sense the $\overline{O F F}_{-}$level again after completing the deactivation sequence. This distinguishes between a card extraction and a hardware problem ($\overline{\mathrm{OFF}}$ - goes high again if a card is present). Depending on the connector's card-present switch (normally closed or normally open) and the mechanical characteristics of the switch, bouncing can occur on the PRES_ signals at card insertion or withdrawal.
The device has a debounce feature with an 8ms typical duration (Figure 6). When a card is inserted, output $\overline{\text { OFF_ }}$ goes high after the debounce time delay. When the card is extracted, an automatic deactivation sequence of the card is performed on the first true/false transition on PRES_ and output $\overline{\text { OFF }}_{-}$goes low.

Smart Card Interface

Figure 4. Activation Sequence at t_{3}

Figure 5. Deactivation Sequence

Smart Card Interface

Figure 6. Behavior of PRES_, $\overline{O F F_{-}}, \overline{C M D V C C}$, and $V_{C C}$

Figure 7. Emergency Deactivation Sequence (Card Extraction)

Smart Card Interface

Stop Mode (Low-Power Mode)

A low-power state, stop mode, can be entered by forcing the $\overline{C M D V C C}, 5 \mathrm{~V} / \overline{3 V}$, and $1 _8 \mathrm{~V}$ input pins to a logic-high state. Stop mode can only be entered when the smart card interface is inactive. In stop mode, all internal analog circuits are disabled. The $\overline{\text { OFF_ }}$ pin follows the status of the PRES_ pin. To exit stop mode, change the state of one or more of the three control
pins to a logic-low. An internal 220 1 s (typ) power-up delay and the 8 ms PRES_ debounce delay are in effect and $\overline{\mathrm{OFF}_{-}}$is asserted to allow the internal circuitry to stabilize. This prevents smart card access from occurring after leaving stop mode. Figure 8 shows the control sequence for entering and exiting stop mode. Note that an in-progress deactivation sequence always finishes before the device enters low-power stop mode.

Figure 8. Stop-Mode Sequence

Smart Card Interface

Smart Card Power Select

The device supports three smart card VCC voltages: $1.8 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V . The power select is controlled by the $1 _8 \mathrm{~V}$ and $5 \mathrm{~V} / 3 \mathrm{~V}$ signals as shown in Table 3. The $1 _8 \mathrm{~V}$ signal has priority over $5 \mathrm{~V} / \overline{3 \mathrm{~V}}$. When $1 _8 \mathrm{~V}$ is asserted high, 1.8 V is applied to V_{CC} when the smart card is active. When 1_8V is deasserted, 5V/3V dictates VCC power range. VCC is 5 V if $5 \mathrm{~V} / \overline{3 \mathrm{~V}}$ is asserted to a logichigh state, and V_{CC} is 3 V if $5 \mathrm{~V} / \overline{3 \mathrm{~V}}$ is pulled to a
logic-low state. Care must be exercised when switching from one VCC power selection to the other. If both $1 _8 \mathrm{~V}$ and $5 \mathrm{~V} / \overline{3 V}$ are high with $\overline{C M D V C C}$ high at the same time, the device enters stop mode. To avoid accidental entry into stop mode, the state of $1 _8 \mathrm{~V}$ and $5 \mathrm{~V} / \overline{3 \mathrm{~V}}$ must not be changed simultaneously. A minimum delay of 100ns should be observed between changing the states of $1 _8 \mathrm{~V}$ and $5 \mathrm{~V} / \overline{3 \mathrm{~V}}$. See Figure 9 for the recommended sequence of changing the V_{C} range.

Table 3. Vcc Select and Operation Mode

$\mathbf{1 _ 8 V}$	$\mathbf{5 V} \overline{\mathbf{3 V}}$	$\overline{\text { CMDVCC }}$	$\mathbf{V} \mathbf{c c}$ SELECT (V)	CARD INTERFACE STATUS
0	0	0	3	Activated
0	0	1	3	Inactivated
0	1	0	5	Activated
0	1	1	5	Inactivated
1	0	0	1.8	Activated
1	0	1	1.8	Inactivated
1	1	0	1.8	Reserved (Activated)
1	1	1	1.8	Not Applicable-Stop Mode

Figure 9. Smart Card Power Select

Smart Card Interface

Switching A/B Interfaces

One of the device's key features is the ability to manage two card slots at the same time. The multiplexing control signal SEL_AB is used to determine which interface is active for communication, though it is possible to leave both interfaces powered at the same time.
When switching between interfaces, the device preserves the state of control signals CLKDIV1, CLKDIV2, $1.8 \mathrm{~V}, 5 \mathrm{~V} / \overline{3 \mathrm{~V}}, \overline{\mathrm{CMDVCC}}$, and RSTIN by latching the pin states. This allows the now inactive interface to stay powered while the other interface is activated for communication, and it also allows for fast switching between card interfaces without the need for a card deactivation and activation sequence. After switching

SEL_AB, the control signals CLKDIV1, CLKDIV2, 1.8V, $5 \mathrm{~V} / \overline{3 \mathrm{~V}}, \overline{\mathrm{CMDVCC}}$, and RSTIN must not be changed for 78μ s while the device latches the state of the pins for the inactive interface. After the control signals are latched, a $42 \mu \mathrm{~s}$ window is provided to change the control inputs.
Note that the behavior of the $\overline{\text { OFF }}$ and $\overline{\text { OFF2 }}$ pins is dependent on the SEL_AB pin. $\overline{\text { OFF }}$ always refers to the active interface, and OFF2 always reports events on the inactive interface. This allows the device to monitor for card insertion and removal on both interfaces simultaneously. See Figure 10 for details on the behavior of the SEL_AB, $\overline{\mathrm{OFF}}$, and $\overline{\mathrm{OFF}}$ p pins with regard to card presence.

Figure 10. Switching A/B Interfaces

Smart Card Interface

Applications Information

Performance can be affected by the layout of the application. For example, an additional cross-capacitance of 1 pF between card reader contacts C2 (RST_) and C3 (CLK_) or C2 (RST_) and C7 (I/O_) can cause contact C2 to be polluted with high-frequency noise from C3 (or C7). In this case, include a 100pF capacitor between contacts C2 and CGND.
Application recommendations include the following:

- Ensure there is ample ground area around the device and the connector; place the device very near to the connector; decouple the VDD and VDDA lines separately. These lines are best positioned under the connector.
- The device and the host microcontroller must use the same VDD supply. Pins CLKDIV1, CLKDIV2, RSTIN, PRES_, I/OIN, 5V/3V, 1_8V, CMDVCC, and OFF are referenced to V_{DD}; if pin XTAL1 is to be driven by an external clock, also reference this pin to VDD.
- Trace C3 (CLK) should be placed as far as possible from the other traces.
- The trace connecting CGND to C5 (GND) should be straight (the two capacitors on C1 (VCC_) should be connected to this ground trace).
- Avoid ground loops between CGND and GND.
- Decouple VDDA and VDD separately. If two supplies are the same in the application, they should be connected in a star on the main trace
With all these layout precautions, noise should be kept to an acceptable level and jitter on C3 (CLK_) should be less than 100ps. Reference layouts are available on request.

Technical Support
For technical support, go to https://support.maximic.com/micro.

Smart Card Interface

Typical Application Circuit

*PLACE A 100nF CAPACITOR CLOSE TO THE DS8005 AND PLACE A 220nF CAPACITOR CLOSE TO CARD CONTACT.

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 SO	W28+1	$\underline{\mathbf{2 1 - 0 0 4 2}}$

Smart Card Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 10$	Initial release	-

