imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Rev 0; 4/08

EVALUATION KIT AVAILABLE

Multiprotocol Dual Smart Card Interface

General Description

The DS8007A multiprotocol dual smart card interface is an automotive grade, low-cost, dual smart card reader interface supporting all ISO 7816, EMV[™], and GSM11-11 requirements. Through its 8-bit parallel bus and dedicated address selects (AD3–AD0), the DS8007A can easily and directly connect to the nonmultiplexed bytewide bus of a Maxim secure microcontroller. Optionally, the parallel bus can be multiplexed to allow direct access to the multiplexed bus of an 80C51-compatible microcontroller through MOVX memory addressing.

One integrated UART is multiplexed among the interfaces to allow high-speed automatic smart card processing with each card-possessing, independent, variable, baud-rate capability. The card interface is controlled by internal sequencers that support automatic activation and deactivation sequencing, handling all actions required for T = 0, T = 1, and synchronous protocols. Emergency deactivation is also supported in case of supply dropout. A third card is supported through the auxiliary I/O. The same set of I/O can optionally be used as additional serial interface for the UART.

The DS8007A provides all electrical signals necessary to interface with two smart cards. The integrated voltage converter ensures full cross-compatibility between 1.8V/3V/5V cards and a 1.8V/3V/5V environment, and allows operation within a 2.7V to 6V supply voltage range. The standard DS8007 revision is available for nonautomotive applications.

Applications

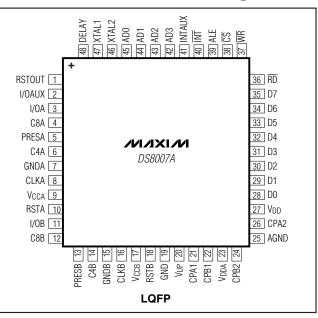
Banking Applications (Point-of-Sale Terminals, Debit/Credit Payment Terminals, PIN Pads, Automated Teller Machines)

Telecommunications

Pay Television

Access Control

Ordering Information


PART	TEMP RANGE	SMART CARDS SUPPORTED	PIN- PACKAGE
DS8007A-EAG+	-40°C to +125°C	2 + auxiliary	48 LQFP

+Denotes a lead(Pb)-free/RoHS-compliant device.

EMV is a trademark owned by EMVCo LLC.

Features

- Complete Interface/Control for Two Separate Smart Card Devices
- 8kV (min) ESD Protection on Card Interfaces
- Internal IC Card Supply Voltage Generation 5.0V ±5%, 65mA (max) 3.0V ±8%, 50mA (max) 1.8V ±10%, 30mA (max)
- Automatic Card Activation, Deactivation, and Data Communication Controlled by Dedicated Internal Sequencer
- Host Interface Through an 8-Bit Parallel Bus (User-Selectable Multiplexed or Nonmultiplexed Modes)
- Chip Select and Three-State Bus Allow Multiple Devices (Card Readers and Memories) on Bus
- 8-Character Receive FIFO with Optional Programmable Depth/Threshold
- ♦ I/O Interface Pin to External ISO 7816 UART
- Separate Card Clock Generation (Up to 10MHz) with 2x Frequency Doubling
- Selectable Card Clock Stop High, Stop Low, or Internally Generated 1.25MHz (for Card Power-Down)
- EMV-Certified Reference Design and Evaluation Kit Available (DS8007-KIT)

Typical Operating Circuit appears at end of data sheet.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: <u>www.maxim-ic.com/errata</u>.

Maxim Integrated Products 1

Pin Configuration

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Voltage Range on VDD Relative to Ground-0.5V to +6.5V Voltage Range on V_{DDA} Relative to Ground-0.5V to +6.5V Voltage Range on Any Pin Relative to Ground Pins CPA1, CPA2, CPB1, CPB2, and V_{UP} -0.5V to +7.5V All Other Pins......05V to (V_{DD} + 0.5V)

Maximum Junction Temperature	+150°C
Maximum Power Dissipation (TA	= -25°C)900mW
Storage Temperature Range	55°C to +150°C
Soldering Temperature	
. .	J-STD-020 Specification.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +3.3V, V_{DDA} = +3.3V, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PAR	AMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Digital Supply	Voltage	V _{DD}		2.7		6.0	V
Step-Up Conve Voltage	erter Supply	V _{DDA}		V _{DD}		6.0	V
Power-Down	Cards Inactive		f _{XTAL} = 0MHz			0.9	mA
V _{DD} Current	Cards Active	IPD	$f_{XTAL} = 0MHz$, $f_{CLK} = 0MHz$, $V_{CCx} = 5V$			2.2	IIIA
Sleep Mode V (Cards Active)		ISTOP	$f_{CLK} = 0MHz, V_{CCx} = 5V$			24	mA
Active V _{DD} Cu 5V Cards	irrent	IDD	$3x V_{DD}$ step-up: I _{CCA} + I _{CCB} = 80mA, V _{DD} = 2.7V, f _{XTAL} = 20MHz, f _{CLK} = 10MHz			325	mA
Active V _{DD} Cu	rrent	IDD	$\begin{array}{l} 2x \ V_{DD} \ step-up: \\ I_{CCA} + I_{CCB} = 80 \text{mA}, \ f_{XTAL} = 20 \text{MHz}, \\ f_{CLK} = 10 \text{MHz}, \ V_{DD} = 2.7 \text{V} \end{array}$			225	mA
3V Cards			No step-up: $I_{CCA} + I_{CCB} = 80$ mA, $f_{XTAL} = 20$ MHz, $f_{CLK} = 10$ MHz, $V_{DD} = 5$ V			120	ША
Power-Fail Re:		V _{RST}	Threshold voltage (falling)	2.1		2.5	V
Power-rail Res	set voltage	V _{HYS}	Hysteresis	50		170	mV
	Reset Threshold	VDRST			1.25		V
Delay Pin	Output Voltage	V _{DO}				V _{DD} + 0.3	v
		IDO	V _{DELAY} = 0V		-2		μA
		UU	VDELAY = VDD		+2		mA
	Output Capacitance	C _{DO}		1			nF
RSTOUT PIN			·				·
Output High Voltage		Vohrsto	I _{OH} = -1mA	0.8 x V _{DD}		V _{DD} + 0.3	V
Output Low Vo	ltage	Volrsto	I _{OL} = 2mA	-0.3		+0.4	V
Leakage Curre	ent	١L	$V_{OL} = 0V, V_{OH} = 5V$	-10		+10	μA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +3.3V, V_{DDA} = +3.3V, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER Alarm Pulse Width		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS							
		Width tw C _{DELAY} = 22nF 10			ms									
Evtorp					External Clock Frequency		stornal Clack Fraguanay		f	External crystal	4		20	
Extern	al Clock F	requency	fxtal	External oscillator	0		20	MHz						
Interna	al Oscillate	or	fint		1.6	2.5	3.7	MHz						
Voltad	e on V _{UP} F	Pin	Vup	3x step-up		5.7		v						
Voltag	C ON VOP I		VUP	2x step-up		4.1		v						
Voltag 3x Ste		n of V_{DDA} for 2x,	VDET		3.25	3.50	3.60	V						
Shutdo	own Tempe	erature	T _{SD}			+150		°C						
	Card Inactive	Output Low Voltage	VOLRST	I _{OLRST} = 1mA	0		0.3	V						
	Mode	Output Current	IOLRST	V _{OLRST} = 0V	0		-1	mA						
	Card Active Mode	Output Low Voltage	VOLRSTL	I _{OLRST} = +200µA	0		0.3	v						
RSTx Pins		Output High Voltage	VOHRSTH	I _{OHRST} = -200µA	V _{CCx} - 0.5		V _{CCx}							
1 1115		Rise Time	trrst	C _L = 30pF			0.1							
		Fall Time	tfrst	$C_L = 30 pF$			0.1	μs						
		Shutdown Current	IRST(SD)			-25		mA						
		Current Limitation	IRST(LIMIT)		-30		+30							
	Card Inactive	Output Low Voltage	Volclk	IOLCLK = 1mA	0		0.3	V						
	Mode	Output Current	IOLCLK	V _{OLCLK} = 0V	0		-1	mA						
		Output Low Voltage	VOLCLK	I _{OLCLK} = +200µA	0		0.3	v						
CLKx Pins		Output High Voltage	Vohclk	I _{ОНСLК} = -200µА	V _{CCx} - 0.5		V _{CCx}							
1 1115	Active Mode	Rise Time	^t RCLK	C _L = 30pF (Note 2)			8							
	Mode	Fall Time	t _{FCLK}	C _L = 30pF (Note 2)			8	ns						
		Current Limitation	ICLK(LIMIT)		-90		+90	mA						
		Clock Frequency f _{CLK}	form	Idle configuration (1MHz)	1		1.85	MHz						
		equency	fCLK	Operational	0		10							
	Duty Fac	tor	δ	$C_L = 30pF$	45		55	%						

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +3.3V, V_{DDA} = +3.3V, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

	PARAMETER		SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
	Card Inactive	Output Low Voltage	V _{CCx}	I _{CC} = 1mA	0		0.3	V
	Mode	Output Current	Icc	$V_{CCX} = 0V$	0		-1	mA
				I _{CC(5V)} < 65mA	4.72	5.00	5.25	
				$I_{CC(3V)} < 50 \text{mA}$	2.75	3.00	3.22	
				I _{CC(1.8V)} < 30mA	1.62	1.80	1.95	
		Output Low Voltage	V _{CCx}	5V card, current pulses of 40nC with I < 200mA, t < 400ns, f < 20MHz	4.6		5.4	V
V _{CCx}				3V card, current pulses of 24nC with I < 200mA, t < 400ns, f < 20MHz	2.75		3.25	
Pins	Card Active			1.8V card, current pulses of 12nC with I < 200mA, t < 400ns, f < 20MHz	1.62		1.98	
	Mode			$V_{CCx(5V)} = 0$ to 5V			-65	_
		Output Current	Icc	$V_{CCx(3V)} = 0$ to 3V			-50	
				$V_{CCx(1.8V)} = 0$ to 1.8V			-30	
		Total Current (Two Cards)	I _{CC(A+B)}				-80	mA
		Shutdown Current	ICC(SD)			-100		
		Slew Rate	VCCSR	Up/down, C < 300nF (Note 3)	0.05	0.16	0.5	V/µs
	Card Inactive Mode	Output Low Voltage	Volio	I _{OLIO} = 1mA	0		0.3	V
		Output Current	IOLIO	V _{OLIO} = 0V	0		-1	mA
		Internal Pullup Resistor	Rpullup	To V _{CCx}	9	14	19	kΩ
		Output Low Voltage	Volio	I _{OLIO} = 1mA	0		0.3	
		Output High	Vouuo	$I_{OHIO} \leq -20\mu A$	0.8 x V _C	Cx	V _{CCx}	V
		Voltage	Vohio	I _{OHIO} ≤ -40µA (3V/5V)	0.75 x V	CCx	V _{CCx}	
I/Ox		Output Rise/Fall Time	tor	C _L = 30pF			0.1	μs
Pins	Card	Input Low Voltage	VILIO		-0.3		+0.8	v
	Active Mode	Input High Voltage	VIHIO		1.5		V _{CC}	v
		Input Low Current	I _{ILIO}	VILIO = 0V			700	μA
		Input High Current	Іініо	VIHIO = V _{CCx}			20	
		Input Rise/Fall Time	tıŢ	$C_L = 30 pF$			1.2	μs
		Current Limitation	IIO(LIMIT)		-25		+25	mA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +3.3V, V_{DDA} = +3.3V, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER			SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
	Card	Output Low Voltage	V _{OLC48}	I _{OLC48} = 1mA	0		0.3	V
	Inactive	Output Current	I _{OLC48}	$V_{OLC48} = 0V$	0		-1	mA
	Mode	Internal Pullup Resistor	Rpullup	Between C4 or C8 and V_{CCx}	6	10	14	kΩ
		Output Low Voltage	VOLC48	I _{OLC48} = 1mA	0		0.35	
		Output High	Valiate	I _{OHC48} ≤ -20µA	0.8 × V _{CCx}		VCCx	V
		Voltage	VOHC48	I _{OHC48} ≤ -40µA (3V/5V)	0.75 x V _{CC}	x	V _{CCx}	
		Output Rise/Fall Time	tot	$C_L = 30 pF$			0.1	μs
C4x, C8x		Input Low Voltage	VILC48		-0.3		+0.8	
Pins	Card Active Mode	Input High Voltage	VIHC48		1.5		V _{CCx}	V
		Input Low Current	I _{ILC48}	V _{ILIO} = 0V			850	
		Input High Current	IIHC48	VIHIO = VCCx			20	μA
		Input Rise/Fall Time	t _{IT}	C _L = 30pF			1.2	μs
		Pullup Pulse Width	twpu	Active pullup		200		ns
		Operating Frequency	fMAX	On card contact pins			1	MHz
TIMIN	G			-				
		ence Duration	t _{ACT}	See Figure 9			130	μs
		quence Duration	tDE	See Figure 9			150	μs
	A/PRESB		1	I				
-	_ow Voltag		VILPRES			0.2	25 x V _{DD}	V
	High Voltag	-	VIHPRES		0.7 x V _{DD}		- 10	V
		lilpres	VILPRES = OV			40	μA	
Input I I/OAU	-	TIL	IIHPRES	VIHPRES = VDD			40	μA
	al Pullup R	esistor	R _{PULLUP}	Between I/OAUX and VDD	9	14	19	kΩ
	t Low Volta		VOLAUX	$I_{OLAUX} = 1mA$		14	0.3	V
· ·	t High Volta	<u> </u>	VOLAUX VOHAUX	10LAUX = 111A $10HAUX = 40\mu A (3V/5V)$	0.75 x V _{DD}		V _{DD}	V
	t Rise/Fall	-	tot	$C_L = 30pF$			0.1	μs

ELECTRICAL CHARACTERISTICS (continued)

(V_DD = +3.3V, V_DDA = +3.3V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
Input Low Voltage	VILAUX		-0.3	0.3 x V _{DD}	V
Input High Voltage	VIHAUX		0.7 x V _{DD}	V _{DD}	V
Input Low Current	IILAUX	VILAUX = 0V		700	μA
Input High Current	IIHAUX	VIHAUX = VDD	-20	+20	μA
Input Rise/Fall Time	tı⊤	$C_L = 30 pF$		1.2	μs
INTERRUPT PIN					
Output Low Voltage	VOLINT	$I_{OH} = 2mA$		0.3	V
Input High Leakage Current	ILIHINT			10	μA
D7 TO D0, ALL OTHER LOGIC	PINS				
Output Low Voltage	V _{OLD}	$I_{OLD} = +5mA$		0.2 x V _{DD}	V
Output High Voltage	VOHD	I _{OHD} = -5mA	0.8 x V _{DD}	V _{DD}	V
Output Rise/Fall Time	tot	$C_L = 50 pF$		25	ns
Input Low Voltage	V _{ILD}			0.3 x V _{DD}	V
Input High Voltage	VIHD		0.7 x V _{DD}		V
Input Low Current	lild		-20	+20	μA
Input High Current	lihd		-20	+20	μA
Load Capacitance	C _{LD}			10	рF

Note 1: Operation guaranteed at -40°C but not tested.

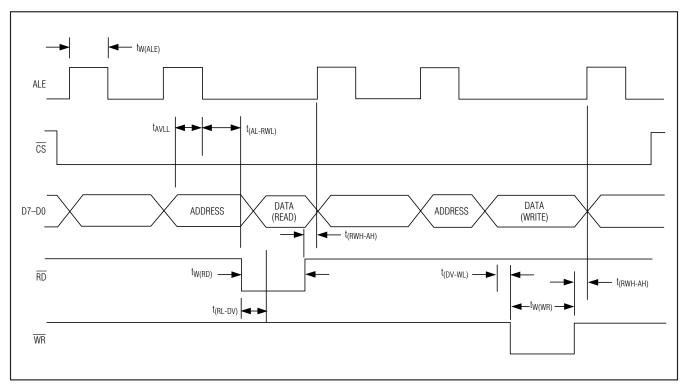
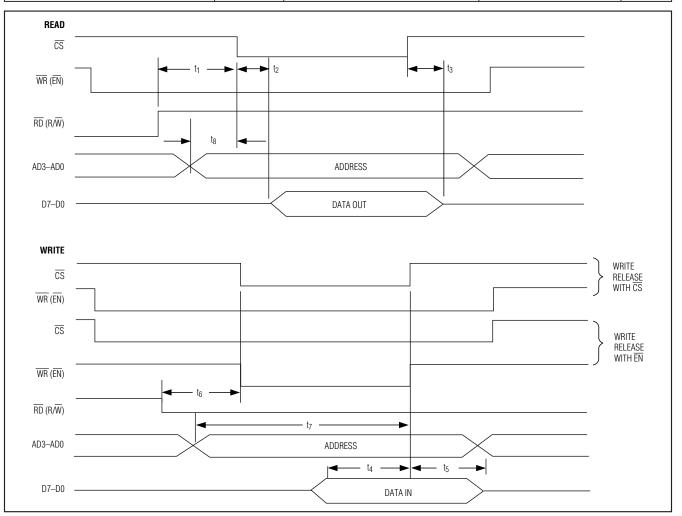
Note 2: Parameters are guaranteed to meet all ISO 7816, GSM11-11, and EMV 2000 requirements. For the 1.8V card, the maximum rise and fall time is 10ns.

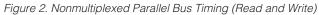
Note 3: Parameter is guaranteed to meet all ISO 7816, GSM11-11, and EMV 2000 requirements. For the 1.8V card, the minimum slew rate is 0.05V/µs and the maximum slew rate is 0.5V/µs.

AC ELECTRICAL SPECIFICATIONS—TIMING PARAMETERS FOR MULTIPLEXED PARALLEL BUS

(V_DD = 3.3V, V_DDA = 3.3V, T_A = +25°C, unless otherwise noted.) (Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
XTAL1 Cycle Time	tCY(XTAL1)		50		ns
ALE Pulse Width	t _{W(ALE)}		20		ns
Address Valid to ALE Low	tavll		10		ns
ALE Low to RD or WR Low	t(AL-RWL)		10		ns
RD Pulse Width	t	Register URR	2 x tcy(xtA	AL1)	
	tw(RD)	Other registers	10		ns
RD Low to Data Read Valid	t(RL-DV)			50	ns
WR/RD High to ALE High	t(RWH-AH)		10		ns
WR Pulse Width	tw(wr)		10		ns
Data Write Valid to WR Low	t(DV-WL)		10		ns

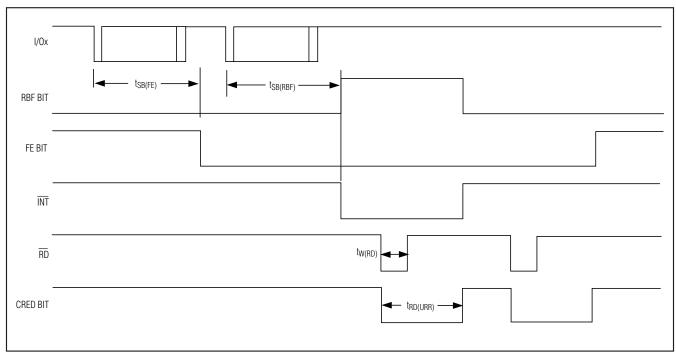




Figure 1. Multiplexed Parallel Bus Timing

AC ELECTRICAL SPECIFICATIONS—TIMING PARAMETERS FOR NONMULTIPLEXED PARALLEL BUS (READ AND WRITE)

(V_DD = 3.3V, V_DDA = 3.3V, T_A = +25°C, unless otherwise noted.) (See Figure 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
RD High to CS Low	t ₁		10			ns
Access Time \overline{CS} Low to Data Out Valid	t2				50	ns
CS High to Data Out High Impedance	t3				10	ns
Data Valid to End of Write	t4		10			ns
Data Hold Time	t5		10			ns
\overline{RD} Low to \overline{CS} or \overline{WR} Low	t ₆		10			ns
Address Stable to $\overline{\text{CS}}$ or $\overline{\text{WR}}$ High	t7		10			ns
Address to CS Low	t8		10			ns


AC ELECTRICAL SPECIFICATIONS—TIMING PARAMETERS FOR CONSECUTIVE READ/WRITE TO URR/UTR/TOC

(V_DD = 3.3V, V_DDA = 3.3V, T_A = +25 $^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ ΜΑΧ	UNITS
SEE FIGURE 3	·	·			
RD Pulse Width	tw(RD)		10		ns
$\overline{\text{RD}}$ Low to Bit CRED = 1	^t RD(URR)		tw(RD) + 2t _{CY(CLK)}	^t W(RD) + 3t _{CY(CLK)}	ns
Set Time Bit FE	t _{SB(FE)}		10.5		ETU
Set Time Bit RBF	tSB(RBF)		10.5		ETU
SEE FIGURE 4					
WR/CS Pulse Width	tw(wR)	(Note 4)	10		ns
WR/CS Low to I/Ox Low	^t wr(utr)		tw(wr) + 2t _{CY(CLK)}	tw(wR) + 3tcy(clk)	ns
SEE FIGURE 5			·		
WR/CS Pulse Width	tw(wR)		10		ns
$\overline{\text{WR/CS}}$ High to Bit CRED = 1	twr(toc)	(Notes 4 and 5)	1 / PSC	2 / PSC	ETU

Note 4: Depends on the leading edge of WR or CS (whichever is deasserted first). Reference this specification to the rising edge of CS/WR instead of the falling edge.

Note 5: PSC is the programmed prescaler value (31 or 32).

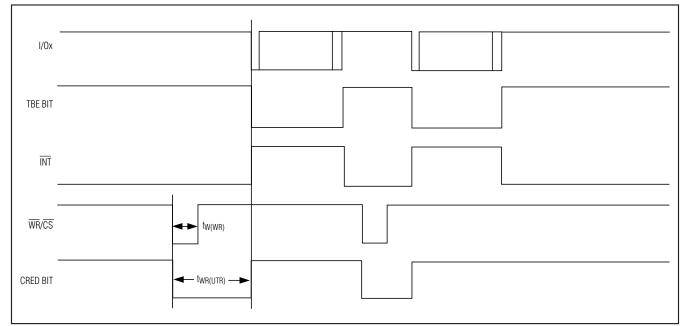


Figure 4. Timing Between Two Write Operations in Register UTR

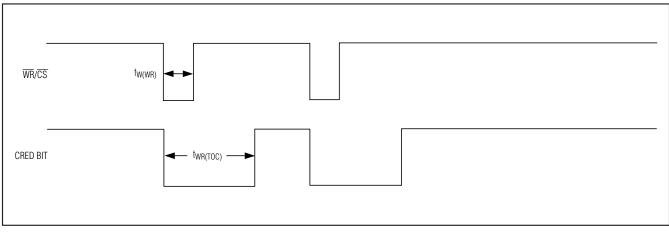


Figure 5. Timing Between Two Write Operations in Register TOC

DS8007A

_Pin Description

PIN	NAME	FUNCTION
1	RSTOUT	Reset Output. This active-high output is provided for resetting external devices. The RSTOUT pin is driven high until the DELAY pin reaches V _{DRST} . Once the DELAY pin reaches V _{DRST} , the RSTOUT pin is tri-stated so it can externally be pulled down. The SUPL bit is set for each RSTOUT pulse.
2	I/OAUX	Auxiliary I/O. This I/O pin allows connection to an auxiliary smart card interface.
3	I/OA	Smart Card A I/O Data Line. This is the I/O data line associated with smart card A. This is also referred to as the ISO C7 contact.
4	C8A	Smart Card A Auxiliary I/O. This is an auxiliary I/O associated with smart card A. This is also referred to as the ISO C8 contact. This can be associated with synchronous cards.
5	PRESA	Smart Card A Presence Contact. This is the active-high presence contact associated with smart card A.
6	C4A	Smart Card A Auxiliary I/O. This is an auxiliary I/O associated with smart card A. This is also referred to as the ISO C4 contact. This can be associated with synchronous cards.
7	GNDA	Smart Card A Ground. This must be connected to GND.
8	CLKA	Smart Card A Clock Output. This is the clock output associated with smart card A. This is also referred to as the ISO C3 contact.
9	VCCA	Smart Card A Supply Voltage. This is the supply voltage output associated with smart card A. This is also referred to as the ISO C1 contact.
10	RSTA	Smart Card A Reset. This is the reset output associated with smart card A. This is also referred to as the ISO C2 contact.
11	I/OB	Smart Card B I/O Data Line. This is the I/O data line associated with smart card B. This is also referred to as the ISO C7 contact.
12	C8B	Smart Card B Auxiliary I/O. This is an auxiliary I/O associated with smart card B. This is also referred to as the ISO C8 contact. This can be associated with synchronous cards.
13	PRESB	Smart Card B Presence Contact. This is the active-high presence contact associated with smart card B.
14	C4B	Smart Card B Auxiliary I/O. This is an auxiliary I/O associated with smart card B. This is also referred to as the ISO C4 contact. This can be associated with synchronous cards.
15	GNDB	Smart Card B Ground. This must be connected to GND.
16	CLKB	Smart Card B Clock Output. This is the clock output associated with smart card B. This is also referred to as the ISO C3 contact.
17	VCCB	Smart Card B Supply Voltage. This is the supply voltage output associated with smart card B. This is also referred to as the ISO C1 contact.
18	RSTB	Smart Card B Reset. This is the reset output associated with smart card B. This is also referred to as the ISO C2 contact.
19	GND	Ground
20	Vup	Step-Up Converter Connection. Connect a low-ESR capacitor of 220nF between this pin and ground.

_____Pin Description (continued)

PIN	NAME	FUNCTION
21	CPA1	Step-Up Converter Contact 1. Connect a low-ESR capacitor of 220nF between CPA1 and CPA2.
22	CPB1	Step-Up Converter Contact 3. Connect a low-ESR capacitor of 220nF between CPB1 and CPB2.
23	23 V _{DDA} Analog Supply Voltage. Positive analog-supply voltage for the step-up converter; can be higher bu lower than V _{DD} . This pin should be decoupled to AGND with a good quality capacitor.	
24	CPB2	Step-Up Converter Contact 4. Connect a low-ESR capacitor of 220nF between CPB1 and CPB2.
25	AGND	Analog Ground
26	CPA2	Step-Up Converter Contact 2. Connect a low-ESR capacitor of 220nF between CPA1 and CPA2.
27	V _{DD}	Digital Supply Voltage. This pin should be decoupled to GND with a good quality capacitor.
28–35	D0-D7	8-Bit Digital I/O. This port functions as the data or address/data communication lines between the host controller and the DS8007A for the nonmultiplexed and multiplexed operating modes, respectively.
36	RD	Active-Low Parallel Bus Read Strobe Input. In multiplexed mode, this input indicates when the host processor is reading information from the DS8007A. In nonmultiplexed mode, this pin signals the current operation is a read ($\overline{RD} = 1$) or a write ($\overline{RD} = 0$) when \overline{CS} and \overline{WR} are low.
37	WR	Active-Low Parallel Bus Write Strobe Input. In multiplexed mode, this input indicates when the host processor is writing information to the DS8007A. In nonmultiplexed mode, a low on this pin signals the bus is engaged in a read or write operation.
38	CS	Active-Low Chip-Select Input. This input indicates when the DS8007A is active on the parallel bus.
39	ALE	Address Latch Enable Input. This signal monitors the ALE signal when the host processor bus is operating in multiplexed mode. Connect this signal to V _{DD} when operating in nonmultiplexed mode.
40	ĪNT	Active-Low Interrupt. This output indicates an interrupt is active.
41	INTAUX	Auxiliary Interrupt Input. This pin serves as an auxiliary interrupt.
42–45	AD3-AD0	Register Selection Address Inputs. These pins function as the address input lines for the nonmultiplexed configuration and should be connected to ground or V_{DD} in the multiplexed configuration.
46, 47	XTAL2, XTAL1	Crystal Oscillators. Place a crystal with appropriate load capacitors between these pins if that is the desired clock source. XTAL1 also acts as an input if there is an external clock source in place of a crystal.
48	DELAY	External Delay Capacitor Connection. Connect a capacitor from this pin to ground to set the power-on reset delay.

Detailed Description

The following describes the major functional features of the device. Use of this document requires the reader have a basic understanding of ISO 7816 terminology.

Parallel Bus Interface

The device interfaces to a host computer/processor through a multiplexed or demultiplexed, parallel, 8-bit data bus (D0–D7). The parallel bus interface monitors the ALE signal and automatically detects whether a multiplexed or nonmultiplexed external bus interface is intended. The nonmultiplexed external bus interface is the default configuration and is maintained so long as no edge (activity) is detected on the ALE pin. Once a rising edge is detected on the ALE pin, the DS8007A is placed into the multiplexed mode of operation. Once in the multiplexed mode of operation, a reset/power cycle or the deassertion of \overline{CS} forces the device to the non-multiplexed mode. Connecting the ALE pin to V_{DD} or ground forces the device into nonmultiplexed parallel bus mode. Figure 7 shows that the bus recognition dictates whether the external address lines (AD3–AD0) can be used directly or whether the external data lines (D7–D0) must be latched according to the ALE input signal. In the multiplexed mode of operation, a new address is latched irrespective of the state of \overline{CS} .

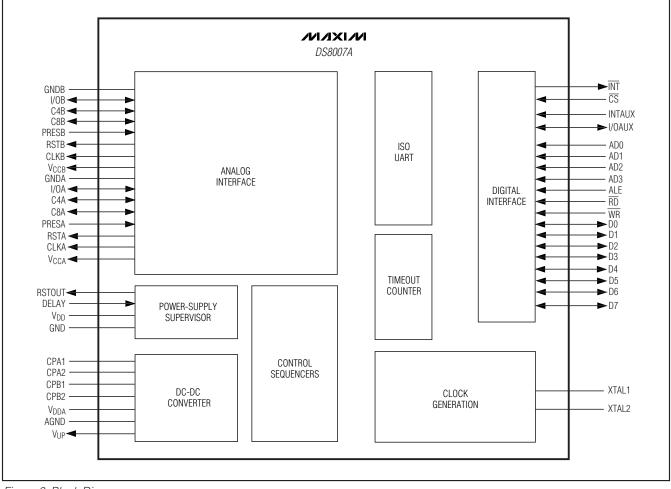
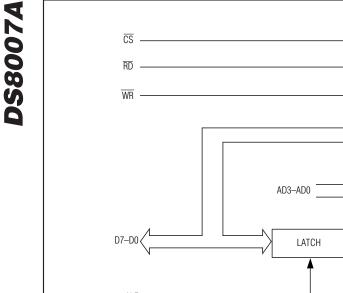



Figure 6. Block Diagram

DS8007A

REGISTERS D3-DC ALE · VDD 2.0 CONTROL LOGIC RST 0R RS1

Figure 7. Parallel Bus Interface

Multiplexed Mode

In the multiplexed mode of operation, the D7-D0 signals are multiplexed between address and data. The falling edge of the address latch enable (ALE) signal from the host microcontroller latches the address (D3–D0), and the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ strobe input signals are used to enable a read or write operation, respectively, if the DS8007A is selected (i.e., $\overline{CS} = 0$). See the AC timing for the multiplexed parallel bus mode found earlier in this data sheet.

Nomultiplexed Mode

In the nonmultiplexed mode of operation, the address is always provided on the AD3-AD0 signals, and the data is always transacted on the D7–D0 signals. The RD input signal is used as a read/write (R/W) operation select. The WR and CS input signals serve as active-low enables, and must be asserted for the read or write operation to take place. See the AC timing for the nonmultiplexed parallel bus mode found earlier in this data sheet.

Control Registers

Special control registers that the host computer/microcontroller accesses through the parallel bus manage most DS8007A features. Many of the registers, although only mentioned once in the listing, are duplicated for each card interface. The PDR, GTR, UCR1, UCR2, and CCR registers exist separately for each of the three card interfaces. The PCR register is provided only for card interface A and card interface B.

The specific register to be accessed is controlled by the current setting of the SC3–SC1 bits in the Card Select Register. For example, there are three instances of the UART Control Register 1 (UCR1) at address 06h. If the SC3–SC1 bits are configured so that card A is selected, then all reads and writes to address 06h only affect card A. If SC3–SC1 are changed to select card B, then all reads and writes to address 06h only affect card B, etc.

In addition, some registers have different functions based on whether the register is being read from or written to. An example of this are the UART Receive (URR)/UART Transmit (UTR) registers located at address ODh. Although they share the same address, during read operations the receive register is read, and write operations go to a separate transmit register. This selection requires no extra configuration by the software.

ADDRESS (HEX)	REGISTER NAME	R/W	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET	RIU = 0*
00	CSR	R/W	CSR7	CSR6	CSR5	CSR4	RIU	SC3	SC2	SC1	0011 0000	0011 Ouuu
01	CCR	R/W	_		SHL	CST	SC	AC2	AC1	AC0	0000 0000	00uu uuuu
02	PDR	R/W	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000 0000	นนนน นนนน
03	UCR2	R/W	_	DISTBE/ RBF	DISAUX	PDWN	SAN	AUTOC	СКU	PSC	0000 0000	นนนน นนนเ
05	GTR	R/W	GTR.7	GTR.6	GTR.5	GTR.4	GTR.3	GTR.2	GTR.1	GTR.0	0000 0000	นนนน นนนเ
06	UCR1	R/W	FTE0	FIP	—	PROT	T/R	LCT	SS	CONV	0000 0000	Ouuu OOuu
07	PCR	R/W	_	_	C8	C4	1V8	RSTIN	3V/5V	START	0011 0000	0011 uuuu
08	TOC	R/W	TOC7	TOC6	TOC5	TOC4	TOC3	TOC2	TOC1	TOC0	0000 0000	0000 0000
09	TOR1	W	TOL7	TOL6	TOL5	TOL4	TOL3	TOL2	TOL1	TOLO	0000 0000	นนนน นนนเ
0A	TOR2	W	TOL15	TOL14	TOL13	TOL12	TOL11	TOL10	TOL9	TOL8	0000 0000	นนนน นนนเ
0B	TOR3	W	TOL23	TOL22	TOL21	TOL20	TOL19	TOL18	TOL17	TOL16	0000 0000	นนนน นนนน
0C	MSR	R	CLKSW	FE	BGT	CRED	PRB	PRA	INTAUX	TBE/ RBF	0101 0000	ս1ս1 սսսն
0C	FCR	W	_	PEC2	PEC1	PEC0	FTE1	FL2	FL1	FL0	0000 0000	Օսսս Օսսւ
0D	URR	R	UR7	UR6	UR5	UR4	UR3	UR2	UR1	UR0	0000 0000	0000 0000
0D	UTR	W	UT7	UT6	UT5	UT4	UT3	UT2	UT1	UTO	0000 0000	0000 0000
0E	USR	R	тоз	TO2	TO1	EA	PE	OVR	FER	TBE/ RBF	0000 0000	0000 0000
0F	HSR	R	_	PRTLB	PRTLA	SUPL	PRLB	PRLA	INTAUXL	PTL	0001 0000	0uuu xxxu

Table 1. Special Function Register Map

*u = unchanged, x = always reflects state of external device pin, even when $\overline{RIU} = 0$. **Note:** Writes to unimplemented bits have no effect. Reads of unimplemented bits return 0.

Card Select Register (CSR)

	7	6	5	4	3	2	1	0
Address 00h	CSR7	CSR6	CSR5	CSR4	RIU	SC3	SC2	SC1
_	R-0	R-0	R-1	R-1	RW-0	RW-0	RW-0	RW-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 00110uuub on \overline{RIU} = 0.

Bits 7 to 4: Identification Bits (CSR7 to CSR4). These bits provide a method for software to identify the device as follows:

0011 = DS8007A revision Ax

Bit 3: Reset ISO UART (RIU). When this bit is cleared (0), most of the ISO UART registers are reset to their initial values. This bit must be cleared for at least 10ns prior to initiating an activation sequence. This bit must be set (1) by software before any action on the UART can take place.

Bits 2 to 0: Select Card Bits (SC3 to SC1). These bits determine which IC card interface is active as shown below. Only one bit should be active at any time, and no card is selected after reset (i.e., SC3-SC1 = 000b). Other combinations are invalid.

000 = No card is selected.001 = Card A is selected.010 = Card B is selected.

100 = AUX card interface is selected.

5 4 З 2 1 0 6 Address 01h SHL CST SC AC2 AC1 AC0 R-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0 RW-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 00uuuuuub on \overline{RIU} = 0.

Bits 7 and 6: Reserved.

Bit 5: Stop High or Low (SHL). This bit determines if the card clock stops in the low or high state when the CST bit is active. It forces the clock to stop in a low state when SHL = 0 or in a high state when SHL = 1.

Bit 4: Clock Stop (CST). For an asynchronous card, this bit allows the clock to the selected card to be stopped. When this bit is set (1), the card clock is stopped in the state determined by the SHL bit. When this bit is cleared (0), the card clock operation is defined by CCR bits AC2–AC0.

Bit 3: Synchronous Clock (SC). For a synchronous card, the card clock is controlled by software manipulation of this SC, and the contact CLKx is the copy of the value in this bit. In synchronous transmit mode, a write to the UTR results in the least significant bit (LSb) of the data written to the UTR being driven out on the

 $\ensuremath{\text{I/Ox}}$ pin. In synchronous receive mode, the state of the $\ensuremath{\text{I/Ox}}$ pin can be read from the LSb of the URR.

Clock Configuration Register (CCR)

Bits 2 to 0: Alternating Clock Select (AC2 to AC0). These bits select the frequency of the clock provided to the active card interface and to the UART for the elementary time unit (ETU) generation as shown below. All frequency changes are synchronous so that there are no spikes or unwanted pulse widths during transitions. f_{INT} is the frequency of the internal oscillator.

AC2-AC0
$000 = f_{XTAL}$
$001 = f_{XTAL} / 2$
$010 = f_{XTAL} / 4$
$011 = f_{XTAL} / 8$
$1xx = f_{INT} / 2$

	7	6	5	4	3	2	1	0
Address 02h	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
_	RW-0							

R = unrestricted read, W = unrestricted write, -n = value after reset; all bits unaffected by \overline{RIU} = 0.

Bits 7 to 0: Programmable ETU Divider Register Bits 7 to 0 (PD7 to PD0). These bits, in conjunction with the defined UART input clock (based upon CKU, AC2–AC0) and the prescaler selection (PSC bit), are used to define the ETU for the UART when interfaced to the associated card interface. The output of the prescaler block is further divided according to the PD7–PD0 bits as follows:

• ETU = Prescaler output / (PD7-PD0), when PD7-PD0 = 02h-FFh

Programmable Divider Register (PDR)

- ETU = Prescaler output / 1, when PD7-PD0 = 00h-01h
- Prescaler output / 256 is not supported

UART Control Register 2 (UCR2)

	7	6	5	4	3	2	1	0
Address 03h	—	DISTBE/RBF	DISAUX	PDWN	SAN	AUTOC	CKU	PSC
	R-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0

R = unrestricted read, W = unrestricted write, -n = value after reset; all bits unaffected by $\overline{RIU} = 0$.

Bit 7: Reserved.

Bit 6: Disable TBE/RBF Interrupt (DISTBE/RBF). This bit controls whether the TBE/RBF flag can generate an interrupt on the INT pin. When this bit is cleared to 0, an interrupt is signaled on the INT pin in response to the TBE/RBF flag getting set. When DISTBE/RBF is set to 1, interrupts are not generated in response to the TBE/RBF flag. Disabling the TBE/RBF interrupt can allow faster communication speed with the card, but requires that a copy of TBE/RBF in register MSR be polled to not lose priority interrupts that can occur in register USR.

Bit 5: Disable Auxiliary Interrupt (DISAUX). This bit controls whether the external INTAUX pin can generate an interrupt on the INT output pin. When this bit is cleared to 0, a change on the INTAUX input pin results in assertion of the INT output pin. When DISAUX is set to 1, a change on INTAUX does not result in assertion of the INT output pin. The INTAUXL bit is set by a change on the INTAUX pin independent of the DISAUX bit state. Since the INTAUX bit is set independent of the DISAUX bit, it is advisable to read HSR (thus clearing INTAUX) prior to clearing DISAUX to avoid an interrupt on the INT pin. To avoid an interrupt when selecting a different card, the DISAUX bit should be set to 1 in all UCR2 registers.

Bit 4: Power-Down Mode Enable (PDWN). This bit controls entry into the power-down mode. Power-down mode can only be entered if the SUPL bit has been cleared. When PDWN is set to 1, the XTAL1 and XTAL2 crystal oscillator is stopped, and basic functions such as the sequencers are supported by the internal ring oscillator. The UART is put in a suspended state, and the clocks to the UART, the ETU unit, and the timeout counter are gated off. During the power-down mode, it is not possible to select a card other than the one currently selected (advisory to the programmer, selecting another card during power-down mode is not recommended). There are five ways of exiting the powerdown mode:

- Insertion of card A or card B (detected by PRLA or PRLB).
- Withdrawal of card A or card B (detected by PRLA or PRLB).
- Reassertion of the \overline{CS} pin to select the DS8007A (\overline{CS} must be deasserted after setting PDWN = 1 for this event to exit from power-down).
- INTAUXL bit is set due to change in INTAUX (INTAUXL bit must be cleared first).
- Clearing of PDWN bit by software (if CS pin is always tied to 0).

Except in the case of a read operation of register HSR, the INT pin remains asserted in the active-low state. The host device can read the status registers after the oscillator warmup time, and the INT signal returns to the high state.

Bit 3: Synchronous/Asynchronous Card Select (SAN). This bit selects whether a synchronous or asynchronous card interface is enabled. When this bit is cleared to 0, an asynchronous card interface is expected. When this bit is set to 1, a synchronous interface is expected. In synchronous mode, the UART is bypassed; the SC bit controls the CLK, and I/O is transacted in the LSb of UTR/URR. Card interface AUX cannot operate in the true synchronous mode since it does not have a CLK signal to accompany I/OAUX. However, the SAN bit invokes the same control of I/OAUX through UTR/URR as is given for card interfaces A and B.

Bit 2: Auto Convention Disable (AUTOC). This activelow bit controls whether the decoding convention should automatically be detected during the first received character in answer-to-reset (ATR). If AUTOC = 0, the character decoding convention is automatically detected (while SS = 1) and the UCR1.CONV bit is written accordingly by hardware. If AUTOC = 1, the UCR1.CONV bit must be set by software to assign the character decoding convention. The \overline{AUTOC} bit must not be changed during a card session.

Bit 1: Clock UART Doubler Enable (CKU). This bit enables the effective ETU defined for the UART to last half the number of clock cycles defined by the AC2–AC0 and PD7–PD0 configuration (except in the case when AC2–AC0 = 000b, where $f_{CLK} = f_{XTAL}$). When CKU is cleared to 0, the AC2–AC0 defined f_{CLK} is used for ETU timing generation. When CKU is set to 1, a clock frequency of 2 x f_{CLK} is used for ETU generation.

Bit 0: Prescaler Select (PSC). When PSC = 0, the prescaler value is 31. When PSC = 1, the prescaler value is 32.

Guard Time Register (GTR)

	7	6	5	4	3	2	1	0
Address 05h	GTR.7	GTR.6	GTR.5	GTR.4	GTR.3	GTR.2	GTR.1	GTR.0
_	RW-0							

R = unrestricted read, W = unrestricted write, -n = value after reset; all bits unaffected by \overline{RIU} = 0.

Bits 7 to 0: Guard Time Register Bits 7 to 0 (GTR.7 to GTR.0). These bits are used for storing the number of guard time units (ETU) requested during ATR. When

transmitting, the DS8007A UART delays these numbers of extra guard time ETU before transmitting a character written to UTR.

UART Control Register 1 (UCR1)

	7	6	5	4	3	2	1	0
Address 06h	FTE0	FIP	_	PROT	T/R	LCT	SS	CONV
	R-0	RW-0	R-0	RW-0	RW-0	RW-0	RW-0	RW-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 0uuu00uub on \overline{RIU} = 0.

Bit 7: FIFO Threshold Enable 0 (FTE0). When this bit and the FTE1 (FCR.3) bit are set, the programmable FIFO threshold feature is enabled. This bit always reads 0 for compatibility.

Bit 6: Force Inverse Parity (FIP). When this bit is configured to 0, the correct parity is transmitted with each character, and receive characters are checked for the correct parity. When FIP = 1, an inverse parity bit is transmitted with each character and correctly received characters are NAK'd.

Bit 5: Reserved. This bit must be left 0. Setting this bit to 1 causes improper device operation.

Bit 4: Protocol Select (PROT). This bit is set to 1 by software to select the asynchronous T = 1 protocol and is cleared to 0 to select the T = 0 protocol.

Bit 3: Transmit/Receive (T/R). This bit should be set by software to operate the UART in transmit mode. When this bit is changed from 0 to 1 (UART changed from receive to transmit mode), hardware sets the USR.RBF/TBE bit, indicating an empty transmit buffer. The T/R bit is automatically cleared to 0 following successful transmission if UCR1.LCT is configured to 1 prior to the transmission. This bit cannot be written to when $\overline{RIU} = 0$ (holding in reset). **Bit 2: Last Character to Transmit (LCT).** This bit is optionally set by software prior to writing the last character to be transmitted to the UART transmit register (UTR). If LCT is set to 1 prior to writing to UTR, hardware resets the LCT, T/R, and TBE/RBF bits following a successful transmission. Setting this bit to 1 allows automatic change to the reception mode after the last character is sent. This bit can be set during and before the transmission. This bit cannot be written to when RIU = 0 (holding in reset).

Bit 1: Software Convention Setting (SS). This bit should be set by software prior to ATR to allow automatic convention detection. Hardware automatically resets the SS bit at 10.5 ETU after the detection of the start bit of the first character of the ATR.

Bit 0: Convention (CONV). This bit defines the character decoding convention of the ISO UART. If CONV = 1, the convention is direct. If CONV = 0, the convention is inverted. If automatic convention detection is enabled $(\overline{AUTOC} = 0)$, hardware detects the character convention and configures the CONV bit appropriately at 10.5 ETU. Otherwise $(\overline{AUTOC} = 1)$, software must configure the CONV bit.

Power Control Register (PCR)

	7	6	5	4	3	2	1	0
Address 07h	—		C8	C4	1V8	RSTIN	3V/5V	START
_	R-0	R-0	RW-1	RW-1	RW-0	RW-0	RW-0	RW-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 0011uuuub on \overline{RIU} = 0.

Note: The AUX card interface does not have register PCR. C4 and C8 are external ports that are internally pulled up ($10k\Omega$ to V_{CCX}), writing a 1 to C4, C8 configures the weak pullup. Reads are made of the pin state to a different physical bit. Writing a 0 to C4, C8 configures the pulldown. C4 and C8 bits can be written irrespective of the state of the T/R bit.

Bits 7 and 6: Reserved.

Bit 5: Contact 8 (C8). Writes to this register bit are output on the C8 pin of the card interface. Reads of this register bit reflect the value on the C8 pin.

Bit 4: Contact 4 (C4). Writes to this register bit are output on the C4 pin of the card interface. Reads of this register bit reflect the value on the C4 pin.

Bit 3: 1.8V Card Select (1V8). If this bit is set to 1, the V_{CCx} supplied to the card interface is 1.8V. This bit overrides the 3V/5V bit.

Bit 2: Reset Bit (RSTIN). When a card interface is activated, the RSTx pin is driven according to the value contained in this register bit.

Bit 1: 3V/5V Card Select (3V/5V). This bit determines the V_{CCX} level for the card interface. When this bit is set to 1, V_{CCX} is defined as 3V. When this bit is cleared to 0, V_{CCX} is defined as 5V. When the 1V8 and 3V/5V bits are set to 1, priority is given to 1V8.

Bit 0: Start (START). This bit controls software activation/deactivation of the card interface. When this bit is written to 1, the activation sequence for the selected card is performed. When this bit is written to 0, the deactivation sequence for the selected card is performed. Hardware automatically resets the START bit for the associated card interface when emergency deactivation occurs. This bit can be written regardless of the state of the RIU bit.

Timeout Configuration Register (TOC)

	7	6	5	4	3	2	1	0
Address 08h	TOC7	TOC6	TOC5	TOC4	TOC3	TOC2	TOC1	TOC0
_	RW-0							

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 0000000b on \overline{RIU} = 0.

Bits 7 to 0: Timeout Counter Configuration Register Bits (TOC7 to TOC0). These register bits determine the counting configuration for the three timeout counter registers. The available configurations are detailed in the *Timeout Counter Operation* section. These registers can be written when $\overline{RIU} = 1$ before activation and cannot be written to when $\overline{RIU} = 0$.

Timeout Counter Register 1 (TOR1)

	7	6	5	4	3	2	1	0
Address 09h	TOL7	TOL6	TOL5	TOL4	TOL3	TOL2	TOL1	TOL0
	W-0							

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is unchanged on \overline{RIU} = 0.

Bits 7 to 0: Timeout Counter Register 1 Bits (TOL7 to TOL0). This register can be configured to operate as an 8-bit counter or as the lowest 8 bits of a 24-bit counter. TOR1, TOR2, and TOR3 are concatenated to form a 24-bit ETU counter or a pair of independent 16- and 8-bit

counters. These counters are only used when a card is supplied an active clock. See the *Timeout Counter Operation* section for details on configurable modes.

Timeout Counter Register 2 (TOR2)

	7	6	5	4	3	2	1	0
Address 0Ah	TOL15	TOL14	TOL13	TOL12	TOL11	TOL10	TOL9	TOL8
_	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is unchanged on \overline{RIU} = 0.

Bits 7 to 0: Timeout Counter Register 2 Bits (TOL15 to TOL8). This register can be configured to operate as the lower 8 bits of a 16-bit counter or as the middle 8

bits of a 24-bit counter. See the *Timeout Counter Operation* section for details on configurable modes.

Timeout Counter Register 3 (TOR3)

	7	6	5	4	3	2	1	0
Address 0Bh	TOL23	TOL22	TOL21	TOL20	TOL19	TOL18	TOL17	TOL16
	W-0							

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is unchanged on \overline{RIU} = 0.

Bits 7 to 0: Timeout Counter Register 3 Bits (TOL23 to TOL16). This register can be configured to operate as the high 8 bits of a 16-bit counter or as the high 8

bits of a 24-bit counter. See the *Timeout Counter Operation* section for details on configurable modes.

	Mixed	Status	Register	(MSR)	
--	-------	--------	----------	-------	--

	7	6	5	4	3	2	1	0
Address 0Ch	CLKSW	FE	BGT	CRED	PRB	PRA	INTAUX	TBE/RBF
	R-0	R-1	R-0	R-1	R-0	R-0	R-0	R-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to u1u1uuu0b on $\overline{RIU} = 0$.

Bit 7: Clock Switch (CLKSW). This status bit indicates the clock (f_{XTAL} / n or $f_{INT} / 2$) being sourced by the selected card interface and thus may be used to determine when a requested clock switch has occurred properly. When CLKSW is set 1, the clock has switched from f_{XTAL} / n to $f_{INT} / 2$; when CLKSW is cleared to 0, the clock has switched from $f_{INT} / 2$ to f_{XTAL} / n .

Bit 6: FIFO Empty Status Bit (FE). This bit is set to 1 when the receive FIFO is empty. This bit is cleared to 0 when at least one character remains in the receive FIFO.

Bit 5: Block Guard Time Status Bit (BGT). This status bit is linked to an ETU counter for the currently selected card interface, and is intended for use in verifying that the block guard time is always being met. The counter restarts on every start bit and stops only if the terminal count is reached. The terminal count is dependent upon the selected protocol (16 ETU for T = 0 and 22 ETU for T = 1). This bit is cleared to 0 on every start bit.

Bit 4: Control Ready (CRED). This bit signals the host device that the DS8007A is ready to handle the next write operation to UTR or TOC or the next read operation of URR. When CRED = 0, the DS8007A is still working on the previous operation and cannot correctly process the new read/write request. When CRED = 1, the DS8007A is ready for the next read/write request. This "busy" bit allows the DS8007A to meet the timing constraints of high-speed host devices. The CRED bit remains low:

- 3 clock cycles after the rising edge of RD before reading URR.
- 3 clock cycles after the rising edge of WR (or CS) before writing to UTR.

• 1/PSC (min) ETU and 2/PSC (max) ETU after the rising edge of WR (or CS) before writing to TOC

The CRED bit timing applies to asynchronous mode only; this bit is forced to 1 in synchronous mode.

Bit 3: Presence Card B (PRB). This bit is set to 1 when card B presence is detected and is cleared to 0 when card B is not present.

Bit 2: Presence Card A (PRA). This bit is set to 1 when card A presence is detected and is cleared to 0 when card A is not present.

Bit 1: INTAUX Bit (INTAUX). This bit reflects the state of the INTAUX pin. This bit is set when the INTAUX pin is high and is cleared when the INTAUX pin is low.

Bit 0: Transmit Buffer Empty/Receive Buffer Full (TBE/RBF). This bit signals special conditions relating to the ISO UART and associated hardware. This bit is not set when the last character is transmitted by the UART when LCT = 1.

This bit is set to 1 when:

- UCR1.T/R is changed from 0 (receive mode) to 1 (transmit mode).
- A character is transmitted by the UART.
- The receive FIFO becomes full.

This bit is cleared to 0 when:

- The ISO UART is reset by $\overline{\text{RIU}} = 0$.
- A character is written to the UART transmit register (UTR) in transmit mode.
- A character is read from the receive FIFO in receive mode.
- UCR1.T/R is changed from 1 (transmit mode) to 0 (receive mode).

FIFO Control Register (FCR)

	7	6	5	4	3	2	1	0
Address 0Ch	_	PEC2	PEC1	PEC0	FTE1	FL2	FL1	FL0
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 0uuu0uuub on \overline{RIU} = 0.

Bit 7: Reserved.

Bits 6 to 4: Parity Error Count (PEC2 to PEC0). These bits are used only for the T = 0 protocol to determine the number of retransmission attempts that can occur in transmit mode and the number of parity errors that can occur before the PE bit is set to 1 to indicate that the parity error limit has been reached. In transmit mode, the DS8007A attempts to retransmit a character up to (PEC2–PEC0) times (when NAK'd by the card) before the PE bit is set. Retransmission attempts are automatically made at 15 ETU from the previous start bit. If PEC2–PEC0 = 000b, no retransmission attempt is made, however, the host device can manually rewrite the character to UTR (in which case, it is re-sent as early as 13.5 ETU from the previous start bit of the error character).

In receive mode, if (PEC2–PEC0 + 1) parity errors have been detected, the USR.PE bit is set to 1. For example,

if PEC2–PEC0 = 000b, only one parity error needs to be detected for the PE bit to be set; if PEC2–PEC0 = 111b, 8 parity errors must be detected, etc. If a character is correctly received before the allowed parity error count is reached, the parity counter is reset. For the T = 1 protocol, the parity counter is not used. The PE bit is set whenever a parity error is detected for a received character.

Bit 3: FIFO Threshold Enable 1 (FTE1). When this bit and the FTE0 (UCR1.7) bit are set, the programmable FIFO threshold feature is enabled. This bit always reads 0 for compatibility.

Bits 2 to 0: FIFO Length (FL2 to FL0). These bits determine the depth of the receive FIFO. The receive FIFO has depth equal to (FL2-FL0) + 1 (e.g., FIFO depth = 2 if FL2-FL0 = 001b).

_UART Receive Register (URR)/UART Transmit Register (UTR)

	7	6	5	4	3	2	1	0
Address 0Dh	UR7/UT7	UR6/UT6	UR5/UT5	UR4/UT4	UR3/UT3	UR2/UT2	UR1/UT1	UR0/UT0
	RW-0							

R = unrestricted read, W = unrestricted write, -n = value after reset. This register is reset to 0000000b on \overline{RIU} = 0.

Bits 7 to 0: UART Receive Register (Read Operations)/UART Transmit Register (Write Operations) (UR7/UT7 to UR0/UT0). This register is used both as the UART transmit and receive buffer by the host microcontroller. Received characters are always read by the host microcontroller in direct convention, meaning that if the CONV bit is 0, then characters received using inverse convention are automatically translated by the hardware. When the receive FIFO is enabled, reads of URR always access the oldest available received data. For the synchronous mode of operation, the LSb (URR.0) reflects the state of the selected card I/Ox line.

Writes by the host microcontroller to this register transmit characters to the selected card. The host microcontroller should write data to UTR in direct convention (inverse convention encoding is handled by the hardware). The UTR register cannot be loaded during transmission. The transmission:

- Starts at the end of the write operation (rising edge of WR) if the previous character has been transmitted and the extra guard time has been satisfied.
- Starts at the end of the extra guard time if that guard time has not been satisfied.
- Does not start if the transmission of the previous character is not completed (e.g., during retransmission attempts or if a transmit parity error occurs).

For the synchronous mode of operation, only the LSb (UTR.0) of the loaded data is transferred to the I/Ox pin for the selected card.

							•	. ,
	7	6	5	4	3	2	1	0
Address 0Eh	TO3	TO2	TO1	EA	PE	OVR	FER	TBE/RBF
_	R-0							

UART Status Register (USR)

R = unrestricted read, W = unrestricted write, -n = value after reset. All register bits are reset to 0000000b on \overline{RIU} = 0.

Note: If any of the bits TO3, TO2, TO1, EA, PE, OVR, or FER are set, then a USR read operation clears the bit, causing an interrupt less than 2µs after the rising edge of the RD strobe. PE and FER can be set by the same reception.

Bits 7 to 5: Timeout Counter 3/2/1 Status (TO3 to TO1). These bits are set to 1 whenever their respective timeout counter reaches its terminal count. Any of these bits causes the INT pin to be asserted.

Bit 4: Early Answer Detected (EA). This bit is set to 1 if a start bit is detected on the I/O line during the ATR between clock cycles 200–368 when the RSTx pin is low, and during the first 368 clock cycles after the RSTx pin is high. When the EA bit becomes set, INT is asserted. If the EA bit is set for a card during ATR, this bit is cleared when switched to another card. During the early answer detection period, a 46-clock-cycles sampling period should be used to detect the start bit; there is an undetected period of 32 clock cycles at the end for both cases (between clock cycles 200–368 when the RSTx pin is low, and the first 368 clock cycles after the RSTx pin is high).

Bit 3: Parity Error (PE). This status bit indicates when the transmit or receive parity error count has been exceeded. For protocol T = 0, the PEC2–PEC0 bits define the allowable number of transmit or receive parity errors. For protocol T = 1, any parity error results in the setting of the PE bit. When the PE bit is set, \overline{INT} is asserted. For protocol T = 0, characters received with the incorrect parity are not stored in the receive FIFO. For protocol T = 1, received characters with parity errors are stored to the receive FIFO regardless of the parity bit. The PE bit is set at 10.5 ETU in reception mode and at 11.5 ETU in transmit mode for T = 0 and T = 1 (PE bit is not applicable for transmit for T = 1).

Bit 2: Overrun FIFO (OVR). This status bit is set to 1 if the UART receives a new character when the receive FIFO is full. When a FIFO overrun condition occurs, the new character received is lost and the previous FIFO content remains undisturbed. When the OVR status bit is set, INT is asserted. The OVR bit is set at 10.5 ETU in receive mode for T = 0 and T = 1.

Bit 1: Framing Error (FER). This status bit is set to 1 if the I/O line is not in the high state at time = 10.25 ETU after the start bit. The FER bit is set to 10.5 ETU in receive mode for T = 0 and T = 1.

Bit 0: Transmit Buffer Empty/Receive Buffer Full (TBE/RBF). This is a duplicate of the same status bit contained in the Mixed Status Register (MSR).

/M/IXI/M

DS8007A

					narawa	re Status	s Regist	er (пэк)
	7	6	5	4	3	2	1	0
Address 0Fh	_	PRTLB	PRTLA	SUPL	PRLB	PRLA	INTAUXL	PTL
-	R-0	R-0	R-0	R-1	R-0	R-0	R-0	R-0

R = unrestricted read, W = unrestricted write, -n = value after reset, x = always reflects state of external device pin. This register is reset to Ouuuxxxub on $\overline{RIU} = 0$.

Note: A minimum of 2µs is needed between successive reads of the HSR to allow for hardware updates. In addition, a minimum of 2µs is needed between reads of the HSR and activation of card A, card B, or the AUX card.

Bit 7: Reserved.

Bit 6: Protection Card Interface B Status Bit (PRTLB). This bit is set to 1 when a fault has been detected on card reader interface B. A fault is defined as detection of a short-circuit condition on either the RSTB or VCCB pin as given by DC specs IRST(SD) and ICC(SD). The INT signal is asserted at logic 0 (active) while this bit is set. This bit returns to 0 after any HSR read, unless the condition persists.

Bit 5: Protection Card Interface A Status Bit (PRTLA). This bit is set to a 1 when a fault has been detected on card reader interface A. A fault is defined as detection of a short-circuit condition on either the RSTA or V_{CCA} pin as given by DC specs I_{RST(SD)} and ICC(SD). The INT signal is asserted at logic 0 (active) while this bit is set. This bit returns to 0 after any HSR read, unless the condition persists.

Bit 4: Supervisor Latch (SUPL). This bit is set to 1 when V_{DD} < V_{RST} or when a reset is caused by externally driving the DELAY pin < 1.25V. At this time the INT signal is asserted at logic 0 (active). This bit returns to 0 only after an HSR read outside the alarm pulse.

Bit 3: Presence Latch B (PRLB). This bit is set to 1 when a level change has been detected on the PRESB pin of card interface B. The INT signal is asserted at logic 0 (active) while this bit is set. This bit returns to 0 after any HSR read.

Bit 2: Presence Latch A (PRLA). This bit is set to 1 when a level change has been detected on the PRESA pin of card interface A. The INT signal is asserted at logic 0 (active) while this bit is set. This bit returns to 0 after any HSR read.

Bit 1: INTAUX Latch (INTAUXL). This bit is set to 1 when a $0 \rightarrow 1$ or a $1 \rightarrow 0$ level change has been detected on the INTAUX pin. This bit remains set, regardless of further level changes on the INTAUX pin until cleared to 0 by any HSR read.

Bit 0: Protection Thermal Latch (PTL). This bit is set to 1 when excessive heating (approximately +150°C or greater) is detected. The INT signal is asserted at logic 0 (active) while this bit is set. This bit returns to 0 after any HSR read, unless the condition persists.