

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

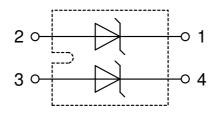
Schottky Diode

200 V

= 2x 120 A

 $0.87 \, V$

High Performance Schottky Diode Low Loss and Soft Recovery Parallel legs


Part number

DSA240X200NA

Backside: isolated

F1 E72873

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~ • Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

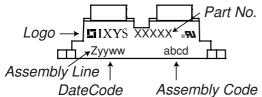
Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20160623b



Schottky					Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ing voltage	$T_{VJ} = 25^{\circ}C$			200	V
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			200	V
I _R	reverse current, drain current	$V_R = 200 \text{ V}$	$T_{VJ} = 25^{\circ}C$			1.5	mA
		$V_R = 200 \text{ V}$	$T_{VJ} = 125^{\circ}C$			15	mΑ
V _F	forward voltage drop	I _F = 120 A	$T_{VJ} = 25^{\circ}C$			1.00	٧
		$I_F = 240 A$				1.26	٧
		I _F = 120 A	T _{vJ} = 125°C			0.87	٧
		$I_F = 240 A$				1.17	٧
I _{FAV}	average forward current	$T_c = 95^{\circ}C$	T _{vJ} = 150°C			120	Α
		rectangular $d = 0.5$					i ! !
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.54	٧
r _F	slope resistance } for power lo	oss calculation only				2.5	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.4	K/W
R _{thCH}	thermal resistance case to heatsing	nk			0.10		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			310	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			1.60	kA
C¹	junction capacitance	$V_R = 24 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		902		pF

Package SOT-227B (minibloc)				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					150	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonago distanco on surfa	ce striking distance through air	terminal to terminal	10.5	3.2			mm
$d_{Spb/Apb}$	creepage distance on surfa	ce striking distance through an	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; IsoL ≤ 1 mA		3000			٧
.002		t = 1 minute			2500			٧

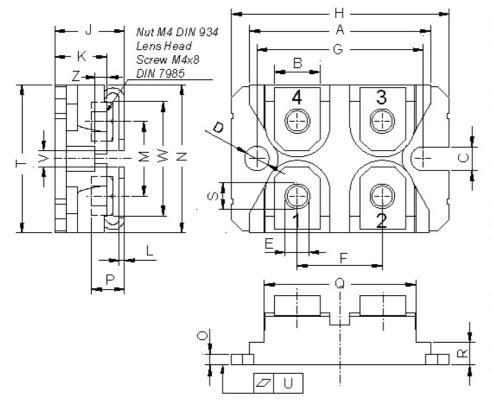
Product Marking

Part description

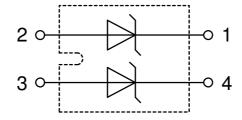
D = Diode S = Schottky Diode

A = low VF 240 = Current Rating [A]

X = Parallel legs 200 = Reverse Voltage [V] NA = SOT-227B (minibloc)


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSA240X200NA	DSA240X200NA	Tube	10	511108

Similar Part	Package	Voltage class
DSS2x101-02A	SOT-227B (minibloc)	200


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$)— <u>R</u> o	Schottky		
V _{0 max}	threshold voltage	0.54		V
$R_{\text{0 max}}$	slope resistance *	0.6		$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millir	neter	Inches	
DIIII.	min	max	min	max
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Е	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
0	1.95	2.13	0.077	0.084
Р	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
Т	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Ζ	2.50	2.70	0.098	0.106

Schottky

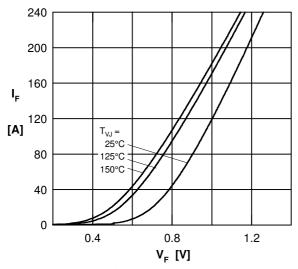


Fig. 1 Max. forward voltage drop characteristics

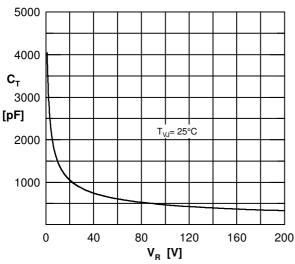


Fig. 3 Typ. junction capacitance C_T versus reverse voltage V_R

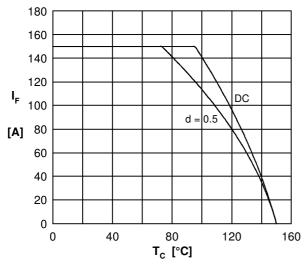


Fig. 5 Average forward current $I_{F(AV)}$ versus case temperature T_{C}

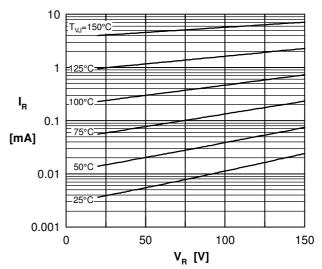


Fig. 2 Typ. reverse current IR versus reverse voltage $\rm V_R$

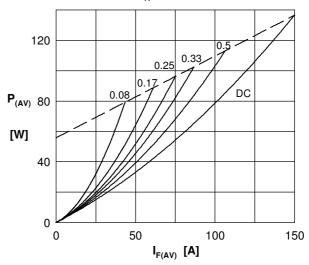


Fig. 4 Forward power loss characteristics

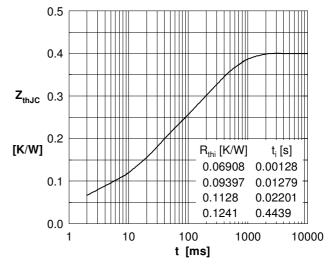


Fig. 6 Transient thermal impedance junction to case