: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description

DSC2311KL2-R0052 is a crystal-less clock generator that is factory configurable to simultaneously output two separate frequencies from 2.3 to 170 MHz . The clock generator uses proven silicon MEMS technology to provide low jitter and high frequency stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, crystal-less clock generators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of consumer electronics, communications, and storage applications.
DSC2311KL2-R0052 has an output enable/disable feature allowing it to disable the outputs when OE is low. The device is available in a space-saving 6-pin $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ TDFN package that needs only a single external bypass capacitor. This requires a PCB footprint equivalent to that of a $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ crystal-based clock generator.

Features

- Two simultaneous LVCMOS outputs:
- 4MHz
- 24MHz
- Low RMS phase jitter: <1ps (typical)
- $\pm 25 \mathrm{ppm}$ frequency stability
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ ext. industrial temperature range
- High supply noise rejection: -50dBc
- High shock \& vibration immunity
- Qualified to MIL-STD-883
- High reliability
- 20x higher MTBF than crystal-based clock generator designs
- Programmable output strength for EMI reduction and signal integrity optimization
- Supply range of 2.25 to 3.6 V
- AEC-Q100 automotive qualified
- 6-pin $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ TDFN package

Applications

- Consumer Electronics
- Camera and Imaging Modules
- Home Automation
- Industrial and Power Conversion
- Mobile Communications, Internet, and Sensor Devices
- Solid State, Hard Drive, and Flash Drive Storage
- Automotive

Block Diagram

ClockWorks is a registered trademark of Microchip Technology Inc.
Microchip Technology Inc. http://www.microchip.com

Ordering Information

Ordering Part Number	Industrial Temperature Range	Shipping	Package
DSC2311KL2-R0052	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Tube	6-pin 2.5mm x 2.0mm TDFN
DSC2311KL2-R0052T	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Tape and Reel	6-pin 2.5mm $\times 2.0 \mathrm{~mm} \mathrm{TDFN}$

Devices are Green and RoHS compliant. Sample material may have only a partial top mark.

Pin Configuration

6-pin $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ TDFN

Pin Description

Pin Number	Pin Name	Pin Type	Pin Level	Pin Function
1	OE	I		Active high output enable for CLK0 and CLK1
2	DNC			Leave unconnected or connect to the ground
3	GND	PWR		Power supply ground
4	CLK0	O	LVCMOS	CLK0 output frequency $=4 M H z$
5	CLK1	O	LVCMOS	CLK1 output frequency $=24 \mathrm{MHz}$
6	VDD	PWR		Power supply

Specifications (Unless specified otherwise: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V}$)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Units
Supply Voltage ${ }^{1}$	VDD		2.25		3.6	V
Supply Current ${ }^{2}$	IDD	OE pin low - outputs are disabled		21	23	mA
Frequency Stability ${ }^{6}$	$\triangle \mathrm{F}$	Includes frequency variation due to initial tolerance, temp. and power supply voltage		± 25		ppm
Aging	$\triangle \mathrm{F}$	First year (@ $25^{\circ} \mathrm{C}$)			± 5	ppm
Startup Time ${ }^{3}$	tSU	$\mathrm{T}=25^{\circ} \mathrm{C}$			5	ms
Input Logic High Input Logic Low	$\begin{aligned} & \text { VIH } \\ & \text { VIL } \end{aligned}$		$0.75 \times \mathrm{VDD}$		$0.25 \times \mathrm{VDD}$	V
Output Disable Time ${ }^{4}$	tDA				5	ns
Output Enable Time ${ }^{4}$	tEN				20	ns
Pull-Up Resistor ${ }^{2}$		Pull-up exists on pin 1		40		kOhms
Output Logic High Output Logic Low	$\begin{aligned} & \text { VOH } \\ & \text { VOL } \end{aligned}$	$\mathrm{I}= \pm 6 \mathrm{~mA}$	$0.9 \mathrm{x} \text { VDD }$		$0.1 \times \mathrm{VDD}$	V
Output Transition Time Rise Time Fall Time	$\begin{aligned} & \mathrm{tR} \\ & \mathrm{tF} \end{aligned}$	$\begin{aligned} & 20 \% \text { to } 80 \% \\ & \text { CL }=15 \mathrm{pF} \end{aligned}$		$\begin{gathered} 1.1 \\ 1.43 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	ns
Frequency	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	$\begin{aligned} & \text { CLK0 } \\ & \text { CLK1 } \end{aligned}$		$\begin{gathered} 4 \\ 24 \end{gathered}$		MHz
Output Duty Cycle	SYM		45		55	\%
Period Jitter ${ }^{5}$	JPER	CLK0 $=$ CLK1 $=25 \mathrm{MHz}$		3		psRMS
Integrated Phase Noise	JCC	200 kHz to $20 \mathrm{MHz} @ 25 \mathrm{MHz}$ 100 kHz to $20 \mathrm{MHz} @ 25 \mathrm{MHz}$ 12 kHz to $20 \mathrm{MHz} @ 25 \mathrm{MHz}$		$\begin{gathered} 0.3 \\ 0.38 \\ 1.7 \end{gathered}$	2	psRMS

Notes:

1. Pin 4 VDD should be filtered with $0.1 u F$ capacitor.
2. Output is enabled if OE pad is high or not connected. Supply current $=$ Disabled Current $+\Delta$ IDD from CLK $0+\Delta$ IDD from CLK 1. See Current Consumption graph on next page.
3. tSU is time to stable output frequency after VDD is applied and outputs are enabled.
4. See Figure 3 for detail (all based on maximum drive settings).
5. Period Jitter includes crosstalk from adjacent output.
6. For other ppm stabilities, contact the factory at MEMS_Support@microchip.com.

Absolute Maximum Ratings

Item	Min.	Max.	Units	Condition
Supply Voltage	-0.3	+4.0	V	
Input Voltage	-0.3	VDD +0.3	V	
Junction Temp	-	+150	${ }^{\circ} \mathrm{C}$	
Storage Temp	-55	+150	${ }^{\circ} \mathrm{C}$	
Soldering Temp	-	+260	${ }^{\circ} \mathrm{C}$	$40 \mathrm{sec} \max$.
ESD				
HBM	-	4000	V	
MM	400			
CDM		1500		

Current Consumption

Figure 1. Total Current $=$ Disabled Current $+\Delta$ IDD Fout1 $+\Delta$ IDD Fout2

Solder Reflow Profile

Figure 2. Solder Reflow Profile

$\mathbf{6}$ QFN						MSL $\mathbf{1} @ \mathbf{2 6 0}{ }^{\circ} \mathbf{C}$ refer to JSTD-020C
Ramp-Up Rate $\left(200^{\circ} \mathrm{C}\right.$ to Peak Temp)	$3^{\circ} \mathrm{C} / \mathrm{sec}$ Max.					
Preheat Time $150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$60-180 \mathrm{sec}$					
Time maintained above $217^{\circ} \mathrm{C}$	$60-150 \mathrm{sec}$					
Peak Temperature	$255-260^{\circ} \mathrm{C}$					
Time within $5^{\circ} \mathrm{C}$ of actual Peak	$20-40 \mathrm{sec}$					
Ramp-Down Rate	$6^{\circ} \mathrm{C} / \mathrm{sec}$ Max.					
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 min Max.					

OE Function and Output Waveform

Figure 3. OE Function and Output Waveform

Package Information ${ }^{7}$

Note:

7. Package information is correct as of the publication date. For updates and most current information, go to www.microchip.com.

Microchip makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Microchip does not assume responsibility for its use. Microchip reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Microchip's terms and conditions of sale for such products, Microchip assumes no liability whatsoever, and Microchip disclaims any express or implied warranty relating to the sale and/or use of Microchip products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.
Microchip products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Microchip Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Microchip for any damages resulting from such use or sale.
© 2016 Microchip Technology Inc.

