imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

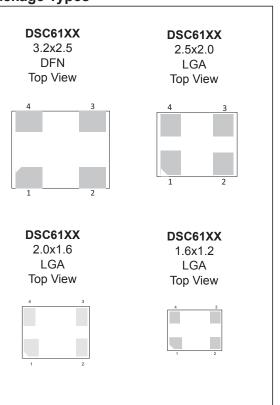
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DSC61XX

Ultra-Small, Ultra-Low Power MEMS Oscillator

Features

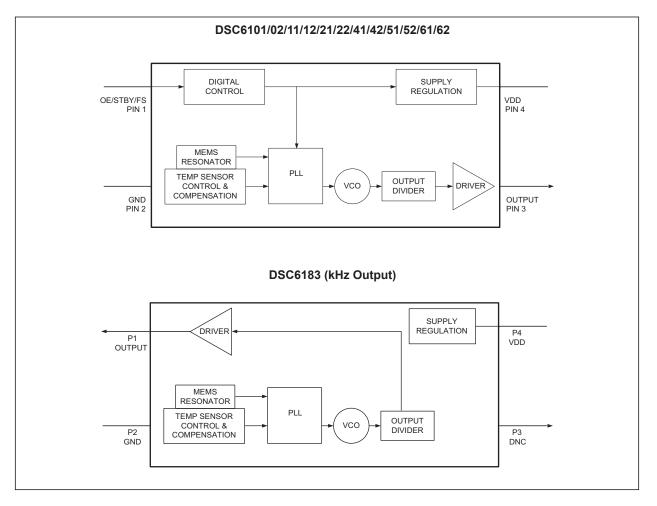
- Wide Frequency Range: 2 KHz to 100 MHz
- Ultra–Low Power Consumption: 3 mA/12 μA (Active/Standby)
- Ultra-Small Footprints
 - 1.6 mm × 1.2 mm
 - 2.0 mm × 1.6 mm
 - 2.5 mm \times 2.0 mm
 - 3.2 mm × 2.5 mm
- Frequency Select Input Supports 2 Predefined Frequencies
- High Stability: ±25, ±50 ppm
- Wide Temperature Range
 - Industrial: -40°C to 85°C
 - Ext. Commercial: -20° to 70°C
- · Excellent Shock & Vibration Immunity
 - Qualified to MIL-STD-883
- · High Reliability
 - 20x Better MTF Than Quartz Oscillators
- Supply Range of 1.71V to 3.63V
- Short Sample Lead Time: <2 weeks
- Lead Free & RoHS Compliant


Applications

- Low Power/portable Applications IoT, Embedded/smart Devices
- Consumer Home Healthcare, Fitness Devices, Home Automation
- Automotive Rear View/surround View Cameras, Infotainment System
- Industrial Building/ Factory Automation, Surveillance Camera

General Description

The DSC61xx family of MEMS oscillators combines the industry leading low power consumption and ultra-small packages with exceptional frequency stability and jitter performance over temperature. The single-output DSC61xx MEMS oscillators are excellent choices for use as clock references in small, battery-powered devices such as wearable and Internet of Things (IoT) devices in which small size, low power consumption, and long-term reliability are paramount. They also meet the stringent mechanical durability and reliability requirements within Automotive Electronics Council standard Q100 (AEC-Q100), so they are well suited for under-hood applications as well.


The DSC61xx family is available in ultra-small 1.6 mm x 1.2 mm and 2.0 mm x 1.6 mm packages. Other package sizes include: 2.5 mm x 2.0 mm and 3.2 mm x 2.5 mm. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Package Types

DSC61XX

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Supply Voltage	
Input Voltage, V _{IN}	
ESD Protection	

DSC61XX ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = 1.8V –5% to 3.3V +10%, T_A = –40°C to 85°C.							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Supply Voltage, Note 1	V _{DD}	1.71	_	3.63	V		
Active Supply Current	I _{DD}	_	3.0	_	mA	F_{OUT} = 27 MHz, V_{DD} = 1.8V, No Load	
Standby Supply Current	lotov		12	_		V _{DD} = 1.8/2.5V	
Note 2	I _{STBY}		80	—	μΑ	V _{DD} = 3.3V	
Frequency Stability Note 3	Δf	_	_	±25 ±50	ppm	All temp ranges	
A	A.5	_	_	±5		1st year @25°C	
Aging	Δf	_	_	±1	ppm	Per year after first year	
Startup Time	t _{SU}	_	_	1.3	ms	From 90% V _{DD} to valid clock output, T = 25°C	
Input Logic Levels Note 4	V _{IH}	0.7xV _{DD}	_	_	V		
Input Logic High Input Logic Low	V _{IL}	_		0.3xV _{DD}	V	—	
Output Disable Time Note 5	t _{DA}	_		200+Period	ns	_	
Output Enable Time Note 6	t _{EN}	_	_	1	μs	_	
Enable Pull-up Resistor Note 7	_	_	300	_	kΩ	If configured	
Output Logic Levels	V _{OH}	0.8xV _{DD}	_		V	I = 6mA	
Output Logic High Output Logic Low	V _{OL}			0.2xV _{DD}	V	I = -6mA	

Note 1: Pin 4 V_{DD} should be filtered with 0.1 uf capacitor.

2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD} .

3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.

4: Input waveform must be monotonic with rise/fall time < 10 ms

5: Output Disable time takes up to 1 Period of the output waveform + 200 ns.

6: For parts configured with OE, not Standby.

7: Output is enabled if pad is floated or not connected.

DSC61XX ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{DD} = 1.8V –5% to 3.3V +10%, T_A = –40°C to 85°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
	t _{RX} /t _{FX}	_	1	1.5	ns	DSC61X2 High Drive,	V _{DD} = 1.8V	
Output Transition Time			0.5	1.0	ns	20% to 80% C _L =15 pF	V _{DD} = 2.5V/3.3V	
Rise Time/Fall Time	t _{RY} /t _{FY}	_	1.2	2.0	ns	DSC61X1 Std Drive,	V _{DD} = 1.8V	
		_	1.5	2.2	ns	20% to 80% C _L =10 pF	V _{DD} = 2.5V/3.3V	
Frequency	f ₀	0.002	_	100	MHz	Output on Pin 1 for < 1 MH		
Output Duty Cycle	SYM	45	_	55	%	_		
Period Jitter, RMS	J _{PER}	_	9.5	11		F _{OUT} =	V _{DD} = 1.8V	
		_	7.5	9	ps _{RMS}	27 MHz	V _{DD} = 2.5V/3.3V	
Cycle-to-Cycle Jitter			50	70		F _{OUT} =	V _{DD} = 1.8V	
(peak)	J _{Cy–Cy}		35	60	ps	27 MHz	V _{DD} = 2.5V/3.3V	

Note 1: Pin 4 V_{DD} should be filtered with 0.1 uf capacitor.

2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at $>3.3V V_{DD}$.

3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.

4: Input waveform must be monotonic with rise/fall time < 10 ms

5: Output Disable time takes up to 1 Period of the output waveform + 200 ns.

6: For parts configured with OE, not Standby.

7: Output is enabled if pad is floated or not connected.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	TJ	_	+150	_	°C	—
Storage Temperature Range	T _A	-55	_	+150	°C	—
Soldering Temperature	Τ _S	—	+260	—	°C	40 Sec. Max.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

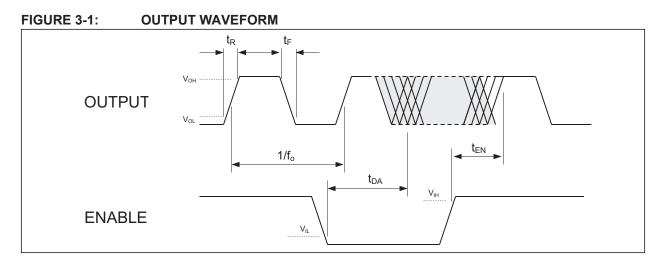
TABLE 2-1: DSC6101/03/11/13/21/23/41/43/51/53/61/63 PIN FUNCTION TABLE (OUTPUT FREQUENCY ≥1MHZ)

Pin Number	Pin Name	Pin Type	Description	
	OE		Output Enable: H = Specified Frequency Output, Note 1 L = Output is high impedance	
1	STDBY		I	Standby: H = Specified Frequency Output, Note 1 L = Output is high impedance. Device is in low power mode, supply current is at I _{STBY}
	FS		Frequency Select: H = Output Frequency 1, Note 2 L = Output Frequency 2	
2	GND	Power	Power supply ground	
3	Output	0	Oscillator clock output	
4	VDD	Power	Power supply	

Note 1: DSC610x/1x/2x has 300 kΩ internal pull-up resistor on pin1. DSC614x/5x/6x has no internal pull-up resistor on pin1 and needs external pull-up or being driven by other chip.

- 2: Two pre-programmed frequencies can be configured at http://clockworks.microchip.com/timing/
- **3:** Bypass with 0.1µF capacitor placed as close to V_{DD} pin as possible.

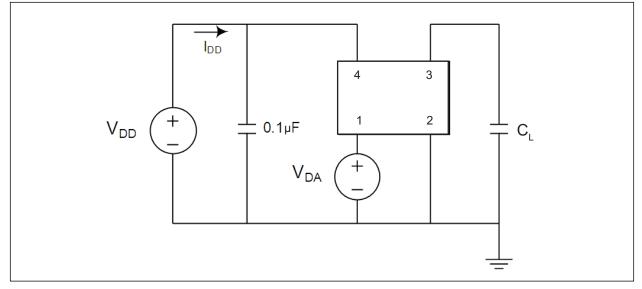
TABLE 2-2: DSC6183 PIN FUNCTION TABLE (OUTPUT FREQUENCY <1MHZ)

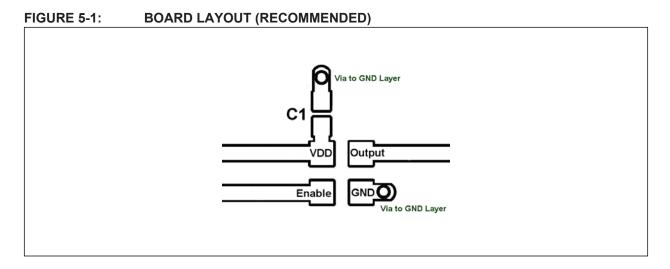

Pin Number	Pin Name	Pin Type	Description
1	Output	0	Kilohertz Oscillator clock output
2	GND	Power	Power supply ground
3	DNC	DNC	Do Not Connect
4	VDD	Power	Power supply, Note 1

Note 1: Bypass with 0.1 μ F capacitor placed as close to V_{DD} pin as possible.

DSC61xx family is available in multiple output driver configurations.

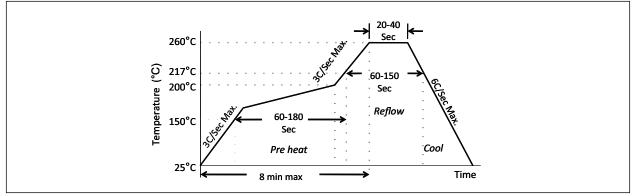
The standard-drive (61x1) and high-drive (61x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended.


3.0 OUTPUT WAVEFORM


DSC61XX

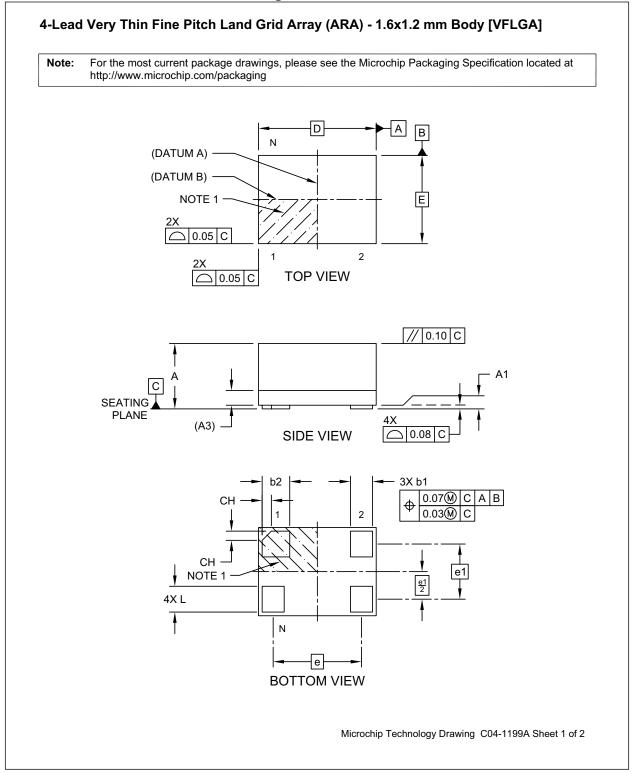
4.0 TEST CIRCUIT

FIGURE 4-1: TEST CIRCUIT



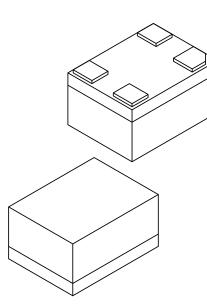
5.0 BOARD LAYOUT (RECOMMENDED)

6.0 SOLDER REFLOW PROFILE


FIGURE 6-1: SOLDER REFLOW

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.				
Preheat Time 150°C to 200°C	60-180 Sec				
Time maintained above 217°C	60-150 Sec				
Peak Temperature	255-260°C				
Time within 5°C of actual Peak	20-40 Sec				
Ramp-Down Rate	6°C/Sec Max.				
Time 25°C to Peak Temperature	8 min. Max.				

7.0 PACKAGING INFORMATION


4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline

4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline

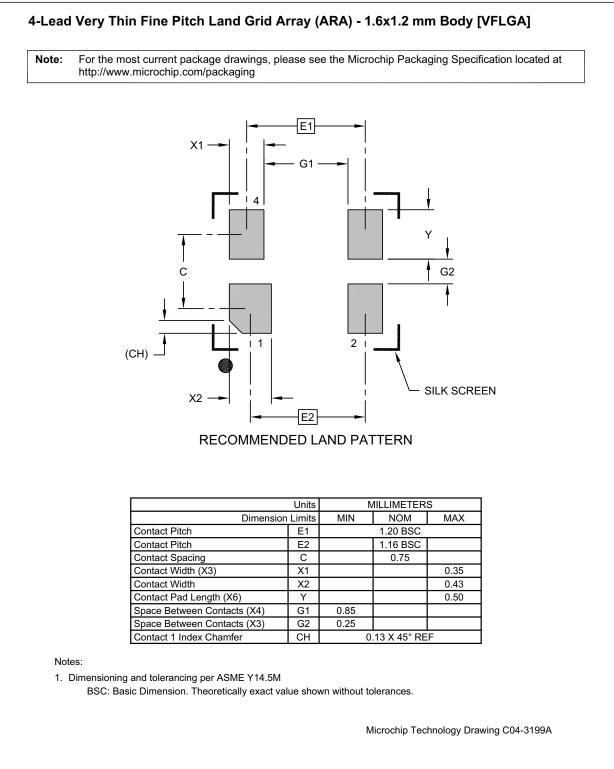
4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	Ν		4			
Terminal Pitch	е		1.20 BSC			
Terminal Pitch	e1	0.75 BSC				
Overall Height	Α	0.79	0.84	0.89		
Standoff	A1	0.00	0.00 0.02			
Substrate Thickness (with Terminals)	A3	A3 0.20 REF				
Overall Length	D	1.60 BSC				
Overall Width	Е	1.20 BSC				
Terminal Width	b1	0.25	0.30	0.35		
Terminal Width	b2	0.325	0.375	0.425		
Terminal Length	L	0.30	0.35	0.40		
Terminal 1 Index Chamfer	-	0.125	-			

Notes:

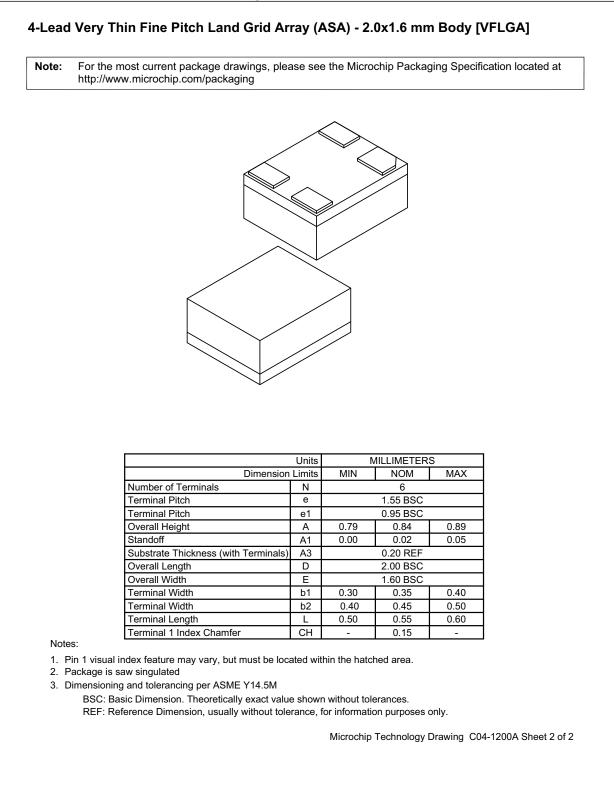
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

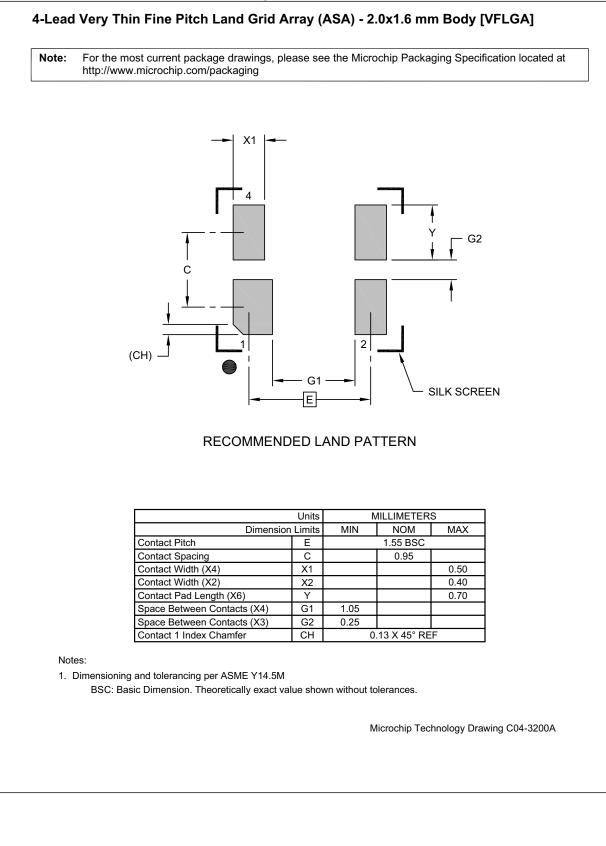

2. Package is saw singulated

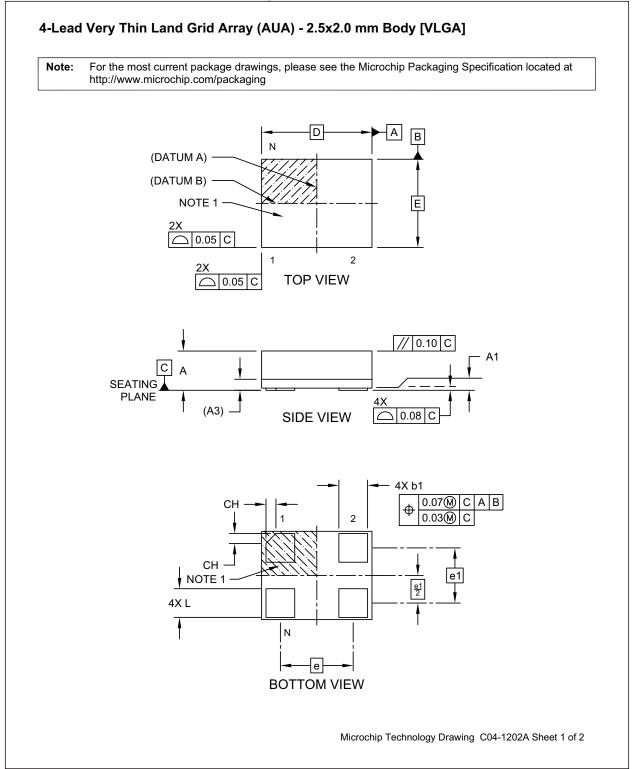
3. Dimensioning and tolerancing per ASME Y14.5M

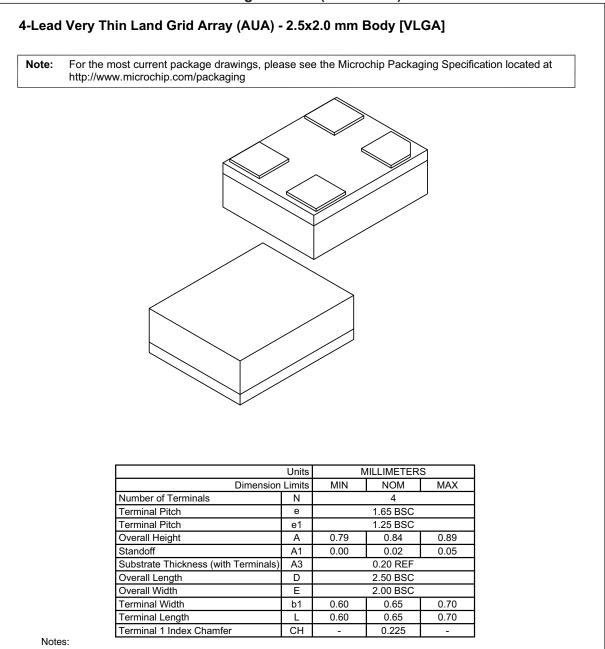
BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1199A Sheet 2 of 2


4-Lead VFLGA 1.6 mm x 1.2 mm Recommended Land Pattern


4-Lead VLGA 2.0 mm x 1.6 mm Package Outline

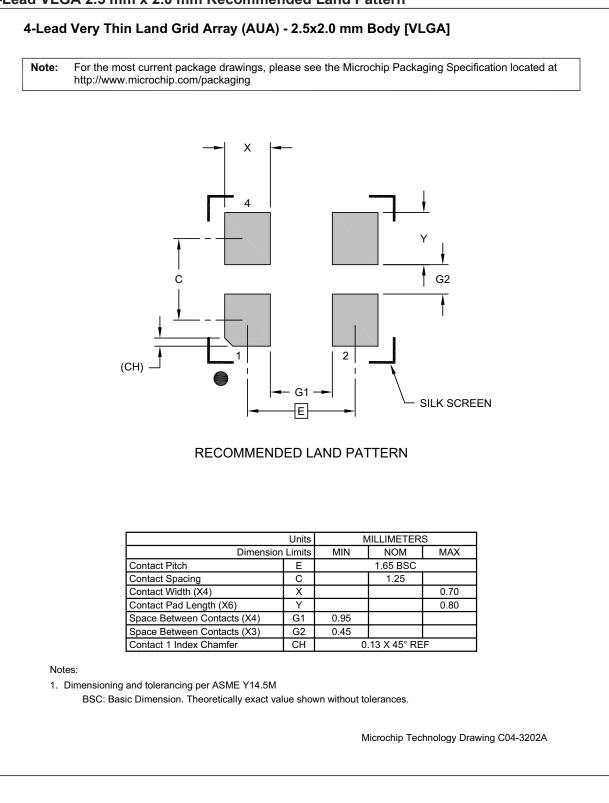

4-Lead VLGA 2.0 mm x 1.6 mm Package Outline (Continued)


4-Lead VFLGA 2.0 mm x 1.6 mm Package Outline

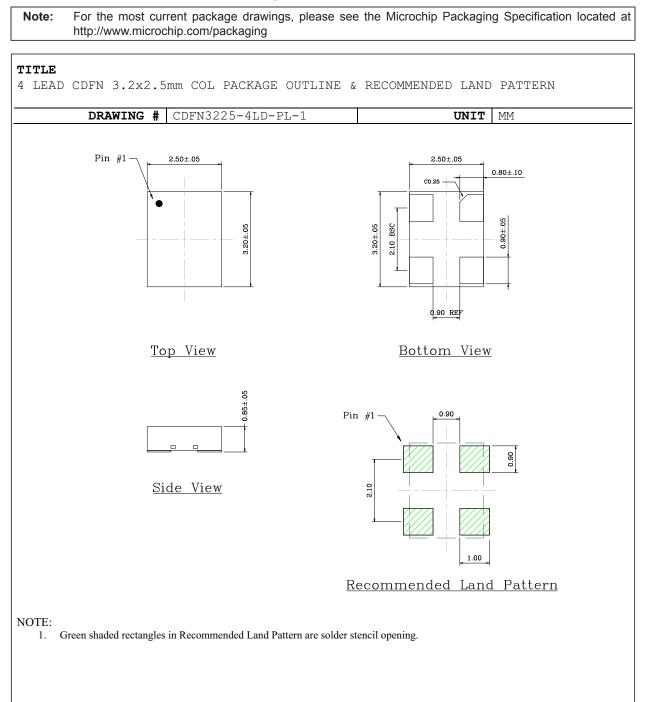
4-Lead VLGA 2.5 mm x 2.0 mm Package Outline

4-Lead VLGA 2.5 mm x 2.0 mm Package Outline (Continued)

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1202A Sheet 2 of 2

4-Lead VLGA 2.5 mm x 2.0 mm Recommended Land Pattern

4-Lead CDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (September 2016)

Initial release of DSC61XX Microchip data sheet DS20005624A.

DSC61XX

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

						Exa	imples:
Definition Dr	X X ltput Package ⁻ rive ength	X Temperatur Range	X e Frequency F Stability	X – XXX.XXXX Cevision Frequency	Ť	a)	DSC6112JI2A-100.0000: Ultra–Low Power MEMS Oscillator, Pin1= Standby with internal Pull–Up, High Output Drive Strength,
Device:	DSC61XX:	Ultra-Lo	w Power MEN	MS Oscillator			4-Lead 2.5 mm x 2.0 mm VFLGA, Industrial Tem- perature (40°C to +85°C),
Pin Definition:	Selection	Pin 1	Internal Pu	III Register			±25 ppm, Revision A, 100 MHz Frequency, Bulk.
	0	OE	Pull-up			b)	DSC6101HE1A-016.0000T: Ultra–Low Power
	1	STDBY	Pull-up				MEMS Oscillator. Pin1= OE
	2	FS	Pull-up				with Internal Pull–Up, Stan-
	4	OE	None				dard Output Drive Strength,
	5	STDBY	None				4-Lead 1.6 mm x1.2 mm
	6	FS	None				VFLGA, Extended Com- mercial Temperature
	8	KHz	None				$(-20^{\circ}C \text{ to } +70^{\circ}C),$
		Output					±50 ppm, Revision Á, 16 MHz Frequency, Tape
Output Drive Strength:	1 2	Standard High				c)	and Reel. DSC6183ME1A-032k768: Ultra–Low Power MEMS Oscillator, Pin1=
Packages:	C = J = M = H =	4-Lead 2. 4-Lead 2.	2 mm x 2.5 mi 5 mm x 2.0 mi 0 mm x 1.6 mi 6 mm x 1.2 mi	m VFLGA m VFLGA			32.768 KHz Clock Output, Low Output Drive Strength, 4-Lead 2.0 mm x1.6 mm VFLGA, Extended Com-
Temperature Range:	E = I =		70°C (Extend ⊦85°C (Industr	led Commercial) rial)		d)	mercial Temperature (–20°C to +70°C), ±50 ppm, Revision A, Bulk DSC6121Cl2A-001A: Ultra–Low Power MEMS Oscillator, Pin1= FS with
Frequency Stability:	1 = 2 =	± 50 ppm ± 25 ppm					internal Pull-up, Standard Output Drive Strength, 4- Lead 3.2 mm x 2.5 mm
Revision:	A =	Revision A	A				CDFN, Industrial Tempera- ture (-40 to 85⊡C), ±25 ppm, Revision A, Fre-
Frequency:	xxxkxxx =	001.0000 User-Defin and 999.9 requency c	99 kHz onfiguration c		S.		quency code = 001A (con- figured through ClockWorks), Bulk
Tape and Reel:	Blank = T =	Bulk Tape and	·	J		Note	1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Note 1: Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/.

DSC61XX

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and water fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV — ISO/TS 16949—

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0961-8