

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



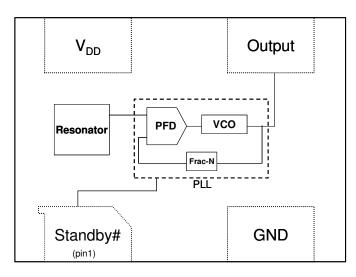






1.8~3.3V

Programmable Low-Power Precision CMOS Oscillator


### **General Description**

The DSC8003 is a programmable silicon MEMS based CMOS oscillator offering excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 to 150MHz in increments of 100Hz (up to four decimal point resolution) with supply voltages between 1.8 to 3.3 Volts and extended temperatures from -40°C to 105°C. The DSC8003 has the same functionality and performance as the DSC8001 but with greater output drive ( $C_L$ =25pf).

The DSC8003 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC8003 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC8003 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

# **Block Diagram**



#### **Features**

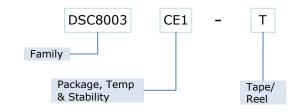
- Frequency Range: Programmable from 1 to 150MHz
- Exceptional Stability over Temperature
  - ±20 PPM , ±25 PPM, ±50 PPM
- Operating voltage
  - o 1.71 to 3.60V
- Operating Temperature Range
  - Ext. Industrial -40°C to 105°C
  - Industrial -40°C to 85°C
  - o Ext. Commercial -20°C to 70°C
  - Low Operating and Standby Current
    - o 7mA Operating (40MHz)
    - 15uA Standby
- Ultra Miniature Footprint
  - o 2.5 x 2.0 x 0.85 mm
  - o 3.2 x 2.5 x 0.85 mm
  - o 5.0 x 3.2 x 0.85 mm
  - o 7.0 x 5.0 x 0.85 mm
- Excellent shock and Vibration Resistance
- Lead Free, RoHS & Reach SVHC Compliant

### **Benefits**

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Frequency Resolution to 4 decimals
- Short mass production lead-times
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

### **Applications**

- Mobile Applications
- Consumer Electronics
- Portable Electronics
- CCD Clock for VTR Cameras
- Low Profile Applications
- Industrial


1 | MK-O-B-P-D-090110-01-1



Absolute Maximum Ratings<sup>1</sup>

| Item           | Min. | Max     | Unit | Condition   |
|----------------|------|---------|------|-------------|
| Supply Voltage | -0.3 | +4.0    | V    |             |
| Input Voltage  | -0.3 | VDD+0.3 | V    |             |
| Junction Temp  | -    | +150    | °C   |             |
| Storage Temp   | -55  | +150    | °C   |             |
| Soldering Temp | -    | +260    | °C   | 40 sec max. |
| ESD            | -    |         | V    |             |
| НВМ            |      | 4000    |      |             |
| ММ             |      | 200     |      |             |
| CDM            |      | 1500    |      |             |

### **Ordering Code**



<sup>\*</sup> See Ordering Information for details

### **Recommended Operating Conditions**

| Parameter                                                 | Symbol   | Range                                            |
|-----------------------------------------------------------|----------|--------------------------------------------------|
| Supply Voltage                                            | $V_{DD}$ | 1.71 - 3.60V                                     |
| Output Load                                               | $Z_{L}$  | R>10KΩ, C≤25pF                                   |
| Operating Temperature<br>Option 1<br>Option 2<br>Option 3 | Т        | -40 to +105 °C<br>-40 to +85 °C<br>-20 to +70 °C |

# Specifications (VDD = 1.8 to 3.3 v) $T_A = 85^{\circ}\text{C}$ unless otherwise specified

| Parameter                                                 | Symbol                                 | Condition                                                                                    | Min                  | Тур | Max                        | Unit  |
|-----------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|----------------------|-----|----------------------------|-------|
| Frequency                                                 | $f_0$                                  | Single Frequency                                                                             | 1                    |     | 150                        | MHz   |
| Frequency Tolerance                                       | Δf                                     | Includes frequency variations due to initial tolerance, temperature and power supply voltage |                      |     | ±10,±25,±50                | ppm   |
| Aging                                                     | Δf                                     | 1 year @25°C                                                                                 |                      |     | ±5                         | ppm   |
| Supply Current, standby                                   | $I_{DD}$                               | T=25°C                                                                                       |                      |     | 15                         | uA    |
| Output Startup Time <sup>2</sup>                          | t <sub>su</sub>                        | T=25°C                                                                                       |                      | 1.0 | 1.3                        | ms    |
| Output Disable Time                                       | t <sub>DA</sub>                        |                                                                                              |                      | 20  | 100                        | ns    |
| Output Duty Cycle                                         | SYM                                    |                                                                                              | 45                   |     | 55                         | %     |
| Input Logic Levels<br>Input logic high<br>Input logic low | $oldsymbol{V_{IH}}{oldsymbol{V_{IL}}}$ |                                                                                              | 0.75*V <sub>DD</sub> |     | -<br>0.25* V <sub>DD</sub> | Volts |

#### Notes:

- 1. Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
- 2.  $t_{SU}$  is time to stable output frequency after  $V_{DD}$  is applied.  $t_{SU}$  and  $t_{EN}$  (after EN is asserted) are identical values.
- 3. Measured over 50k clock cycles.

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 2 | MK-Q-B-P-D-090110-01-1



### VDD = 1.8v

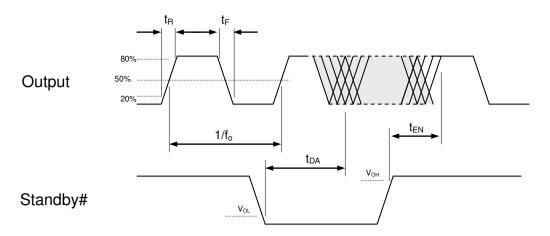
| Parameter                                                    | Symbol                             | C                               | Condition                             | Min                 | Тур                       | Max                       | Unit   |
|--------------------------------------------------------------|------------------------------------|---------------------------------|---------------------------------------|---------------------|---------------------------|---------------------------|--------|
| Supply Current, no load                                      | ${ m I}_{ m DD}$                   | $C_L=0p$ $R_L=\infty$ $T=25$ °C | 1MHz<br>27MHz<br>70MHz<br>150MHz      |                     | 5.7<br>6.4<br>7.7<br>10.0 | 6.0<br>6.8<br>8.0<br>11.0 | mA     |
| Output Logic Levels<br>Output logic high<br>Output logic low | V <sub>OH</sub><br>V <sub>OL</sub> |                                 | -6mA<br>6mA                           | 0.8*V <sub>DD</sub> |                           | -<br>0.2*V <sub>DD</sub>  | Volts  |
| Output Transition time<br>Rise Time<br>Fall Time             | t <sub>R</sub><br>t <sub>F</sub>   | _                               | 5pF; T=25°C<br>%/80%*V <sub>DD</sub>  |                     | 1.5<br>1.2                | 3<br>3                    | ns     |
| Output Transition time<br>Rise Time<br>Fall Time             | t <sub>R</sub><br>t <sub>F</sub>   |                                 | .5pF; T=25°C<br>%/90%*V <sub>DD</sub> |                     | 2.6<br>1.9                | 4<br>4                    | ns     |
| Period Jitter                                                | $J_p$                              | F :                             | = 100MHz <sup>3</sup>                 |                     | 10                        | 15                        | ps rms |

#### VDD = 2.5v

| Parameter                                              | Symbol                             | C                                                       | ondition                             | Min                 | Тур                       | Max                       | Unit   |
|--------------------------------------------------------|------------------------------------|---------------------------------------------------------|--------------------------------------|---------------------|---------------------------|---------------------------|--------|
| Supply Current, no load                                | ${ m I}_{ m DD}$                   | C <sub>L</sub> =0p<br>R <sub>L</sub> =∞<br>T=25°C       | 1MHz<br>27MHz<br>70MHz<br>150MHz     |                     | 5.7<br>6.7<br>8.4<br>11.4 | 6.0<br>7.1<br>8.8<br>12.7 | mA     |
| Output Logic Levels Output logic high Output logic low | V <sub>OH</sub><br>V <sub>OL</sub> |                                                         | -6mA<br>6mA                          | 0.8*V <sub>DD</sub> |                           | -<br>0.2*V <sub>DD</sub>  | Volts  |
| Output Transition time<br>Rise Time<br>Fall Time       | t <sub>R</sub><br>t <sub>F</sub>   |                                                         | 5pF; T=25°C<br>%/80%*V <sub>DD</sub> |                     | 1.1<br>0.9                | 2<br>2                    | ns     |
| Output Transition time Rise Time Fall Time             | t <sub>R</sub><br>t <sub>F</sub>   | C <sub>L</sub> =25pF; T=25°C<br>10%/90%*V <sub>DD</sub> |                                      |                     | 1.9<br>1.5                | 3.5<br>3                  | ns     |
| Period Jitter                                          | $J_p$                              | F=                                                      | = 100MHz <sup>3</sup>                |                     | 5                         | 10                        | ps rms |

#### VDD = 3.3v

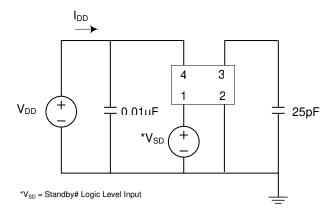
| Parameter                                              | Symbol                             | C                                                       | ondition                         | Min.                | Тур.                      | Max.                      | Unit   |
|--------------------------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------|---------------------|---------------------------|---------------------------|--------|
| Supply Current, no load                                | ${ m I}_{ m DD}$                   | C <sub>L</sub> =0p<br>R <sub>L</sub> =∞<br>T=25°C       | 1MHz<br>27MHz<br>70MHz<br>150MHz |                     | 5.7<br>7.0<br>9.1<br>13.1 | 6.0<br>7.4<br>9.6<br>15.0 | mA     |
| Output Logic Levels Output logic high Output logic low | V <sub>OH</sub><br>V <sub>OL</sub> |                                                         | -6mA<br>6mA                      | 0.9*V <sub>DD</sub> |                           | -<br>0.1*V <sub>DD</sub>  | Volts  |
| Output Transition time<br>Rise Time<br>Fall Time       | t <sub>R</sub><br>t <sub>F</sub>   | C <sub>L</sub> =25pF; T=25°C<br>20%/80%*V <sub>DD</sub> |                                  |                     | 1.1<br>0.9                | 2<br>2                    | ns     |
| Output Transition time<br>Rise Time<br>Fall Time       | t <sub>R</sub><br>t <sub>F</sub>   | C <sub>L</sub> =25pF; T=25°C<br>10%/90%*V <sub>DD</sub> |                                  |                     | 1.5<br>1.5                | 3<br>3                    | ns     |
| Period Jitter                                          | $J_p$                              | F=                                                      | = 100MHz <sup>3</sup>            |                     | 5                         | 10                        | ps rms |


All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 3 | MK-Q-B-P-D-090110-01-1

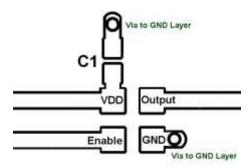
MK-Q-B-P-D-090110-01-1



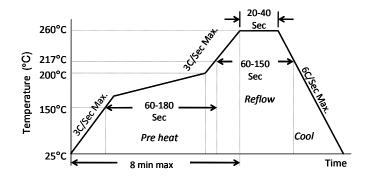

# **Output Waveform**



### **Standby Function**


| Standby#<br>(pin 1)  | Output<br>(pin 3) |
|----------------------|-------------------|
| Hi Level             | Output ON         |
| Open<br>(no connect) | Output ON         |
| Low Level            | High Impedance    |

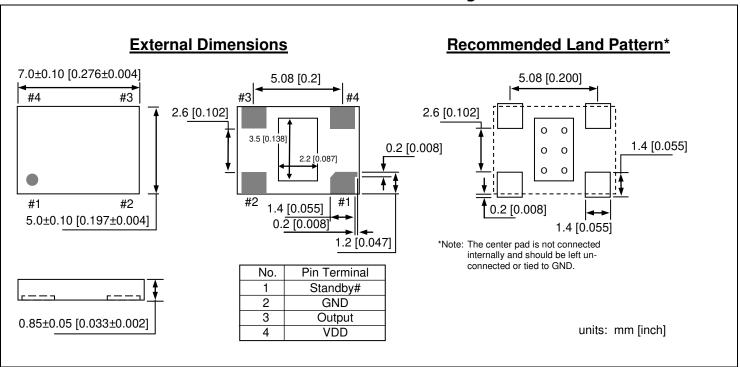
### **Test Circuit**






# **Board Layout (recommended)**



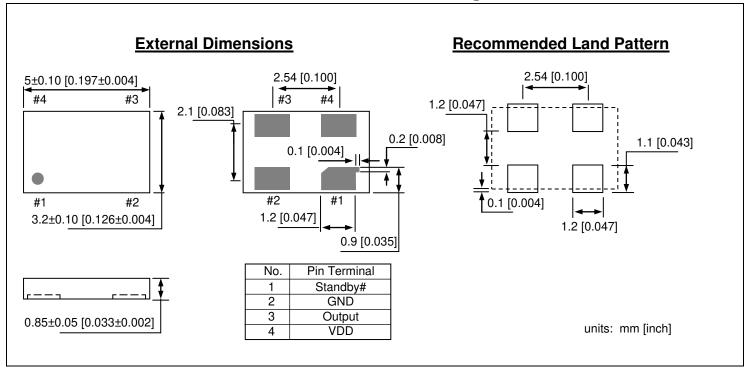

#### **Solder Reflow Profile**



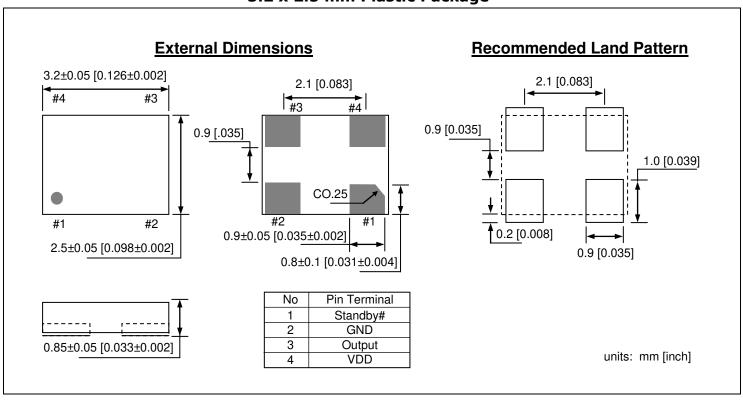
| MSL 1 @ 260°C refer to JSTD-020C  |              |  |  |  |  |
|-----------------------------------|--------------|--|--|--|--|
| Ramp-Up Rate (200°C to Peak Temp) | 3°C/Sec Max. |  |  |  |  |
| Preheat Time 150°C to 200°C       | 60-180 Sec   |  |  |  |  |
| Time maintained above 217°C       | 60-150 Sec   |  |  |  |  |
| Peak Temperature                  | 255-260°C    |  |  |  |  |
| Time within 5°C of actual Peak    | 20-40 Sec    |  |  |  |  |
| Ramp-Down Rate                    | 6°C/Sec Max. |  |  |  |  |
| Time 25°C to Peak Temperature     | 8 min Max.   |  |  |  |  |

# **Package Dimensions**

### 7.0 x 5.0 mm Plastic Package




All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.


Page 5 | MK-Q-B-P-D-090110-01-1

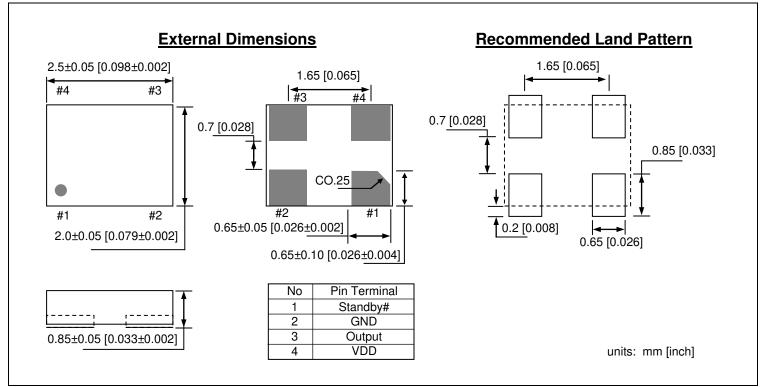


### 5.0 x 3.2 mm Plastic Package



### 3.2 x 2.5 mm Plastic Package




All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 6 | MK-Q-B-P-D-090110-01-1



MK-Q-B-P-D-090110-01-1

### 2.5 x 2.0 mm Plastic Package



### **Ordering Information**

### **DSC8003 PTS - T**

| PART NUMBERING GUIDE                                        |                                                                 |                                                                |                                |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--|--|--|
| <b>Package</b><br>(Plastic QFN)                             | Temperature                                                     | Stability                                                      | Packing Option                 |  |  |  |
| P=A: 7.0x5.0mm P=B: 5.0x3.2mm P=C: 3.2x2.5mm P=D: 2.5x2.0mm | T=E: -20° ~ +70° C<br>T=I: -40° ~ +85° C<br>T=L: -40° ~ +105° C | <b>S=1:</b> ±50ppm<br><b>S=2:</b> ±25ppm<br><b>S=3:</b> ±20ppm | Blank: Tubes<br>T: Tape & Reel |  |  |  |

#### **Disclaimer:**

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

MICREL, Inc. 2180 Fortune Drive, San Jose, California USA

Phone: +1 (408) 944-0800 Fax: +1 (408) 474-1000 • Email: hbwhelp@micrel.com www.micrel.com

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use. Page 7 |