

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

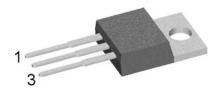
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

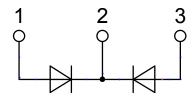
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


HiPerFRED

 V_{RRM} = 600 V I_{FAV} = 2x 10 A $t_{...}$ = 30 ns


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DSEC16-06A

Backside: cathode

Features / Advantages:

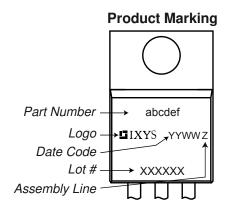
- Planar passivated chips
- Very low leakage current
 Very short receiver time
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-220

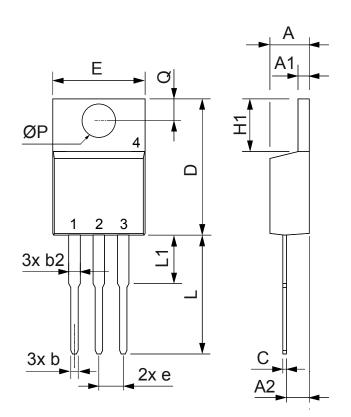
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0



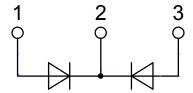
Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			600	V
V _{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			600	V
I _R	reverse current, drain current	V _R = 600 V	$T_{VJ} = 25^{\circ}C$			60	μA
		$V_R = 600 V$	$T_{VJ} = 150^{\circ}C$			0.25	mΑ
V _F	forward voltage drop	I _F = 10 A	$T_{VJ} = 25^{\circ}C$			2.10	V
		$I_F = 20 A$				2.32	٧
		I _F = 10 A	T _{VJ} = 150°C			1.42	٧
		$I_F = 20 A$				1.68	V
I _{FAV}	average forward current	T _c = 135°C	T _{VJ} = 175°C			10	Α
		rectangular d = 0.5					!
V _{F0}	threshold voltage	and addition only	T _{vJ} = 175°C			1.03	V
r _F	slope resistance	oss calculation only				25.1	mΩ
R _{thJC}	thermal resistance junction to case	e				2.5	K/W
R _{thCH}	thermal resistance case to heatsin	nk			0.50		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			60	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			50	Α
CJ	junction capacitance	V _R = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		6		pF
I _{RM}	max. reverse recovery current		$T_{VJ} = 25^{\circ}C$		4		Α
		$I_F = 10 \text{ A}; V_R = 100 \text{ V}$	$T_{VJ} = 100$ °C		6		Α
t _{rr}	reverse recovery time	-di _F /dt = 200 A/μs	$T_{VJ} = 25^{\circ}C$		30		ns
)	$T_{VJ} = 100$ °C		90		ns

Packag	e TO-220			Ratings	3	
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 1)			35	Α
T _{stg}	storage temperature		-55	i	150	°C
T _{VJ}	virtual junction temperature		-55	i	175	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	N

¹⁾ I_{nace} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a common cathode/anode configuration with a non-isolated backside, the current capability can be increased by connecting the backside.


Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSEC16-06A	DSEC16-06A	Tube	50	475130

Similar Part	Package	Voltage class
DSEC16-06AC	ISOPLUS220AB (3)	600


Equivalent Circuits for Simulation			* on die level	T _{VJ} = 175°C
$I \rightarrow V_0$	R_0	Fast Diode		
V _{0 max}	threshold voltage	1.03		V
$R_{0\text{max}}$	slope resistance *	22		$m\Omega$

Outlines TO-220

D:	Para National Landon				
Dim.	Millimeter		Inches		
	Min. Max.		Min.	Max.	
Α	4.32	4.82	0.170	0.190	
A1	1.14	1.39	0.045	0.055	
A2	2.29	2.79	0.090	0.110	
b	0.64	1.01	0.025	0.040	
b2	1.15	1.65	0.045	0.065	
С	0.35	0.56	0.014	0.022	
D	14.73	16.00	0.580	0.630	
Е	9.91	10.66	0.390	0.420	
е	2.54	BSC	0.100	BSC	
H1	5.85	6.85	0.230	0.270	
L	12.70	13.97	0.500	0.550	
L1	2.79	5.84	0.110	0.230	
ØP	3.54	4.08	0.139	0.161	
Q	2.54	3.18	0.100	0.125	

Fast Diode

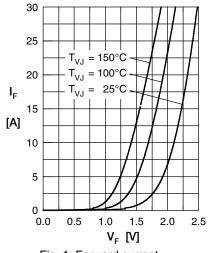


Fig. 1 Forward current I_F versus V_F

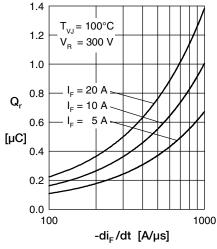


Fig. 2 Typ. reverse recov. charge Q_r versus $-di_F/dt$

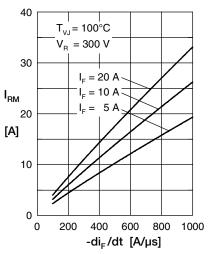


Fig. 3 Typ. peak reverse current I_{RM} versus $-di_F/dt$

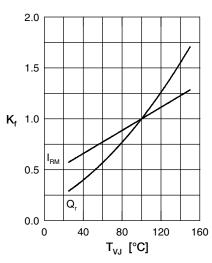


Fig. 4 Dynamic parameters $Q_{\rm r},~I_{\rm RM}$ versus $T_{\rm VJ}$

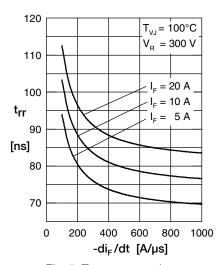


Fig. 5 Typ. recovery time t_{rr} versus $-di_F/dt$

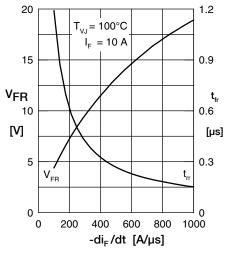


Fig. 6 Typ. peak forward voltage $V_{\rm FB}$ and $t_{\rm fr}$ versus $di_{\rm F}/dt$

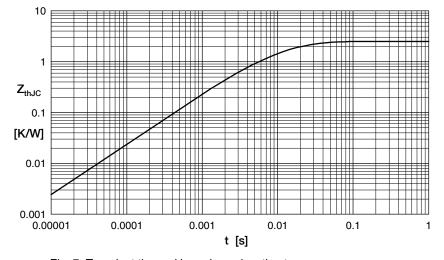


Fig. 7 Transient thermal impedance junction to case

Constants for $Z_{\rm thJC}$ calculation:

i	R _{thi} [K/W]	t _i [s]
1	1.449	0.0052
2	0.5578	0.0003
3	0.4931	0.0169