: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Phase-leg
 Rectifier Diode

Symbol	Test Conditions		Maximum Ratings	
$\mathrm{I}_{\text {(RMS) }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ & \mathrm{~T}_{\text {case }}=100^{\circ} \mathrm{C} ; 180^{\circ} \text { sine } \end{aligned}$		43	A
$\mathrm{I}_{\text {F(AV) }}$			28	A
$\mathrm{I}_{\text {FSM }}$	$\begin{array}{ll}\mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} ; & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms}\end{array}$	(50 Hz), sine	300	A
		$(60 \mathrm{~Hz})$, sine	330	A
	$\mathrm{T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} ; \quad \mathrm{t}=10 \mathrm{~ms}$	(50 Hz), sine	270	A
		$(60 \mathrm{~Hz})$, sine	300	A
$\overline{12}$	$\begin{array}{ll}\mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms}\end{array}$	(50 Hz), sine	450	$\mathrm{A}^{2} \mathrm{~s}$
		$(60 \mathrm{~Hz})$, sine	450	$A^{2} \mathrm{~S}$
	$\begin{aligned} \mathrm{T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C} ; & \mathrm{t}=10 \mathrm{~ms} \\ \mathrm{t} & =8.3 \mathrm{~ms} \end{aligned}$	(50 Hz), sine	340	$A^{2} \mathrm{~S}$
		$(60 \mathrm{~Hz})$, sine	325	$A^{2} \mathrm{~S}$
T_{vj}			$-40 \ldots+180$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$			180	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$			$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}{ }^{\text {* }}$	mounting torque M3 mounting force with clip		0.8...1.2	Nm
F_{c}			20... 120	N
$\mathrm{V}_{\text {ISOL }}$ **	50/60 Hz, RMS, t = 1 minute, leads-to-tab		2500	V
Weight	TO-268 / TO-247		4 / 6	g

* Verson A only; ** Version AR only

Symbol	Test Conditions	Characteristic Values		
I_{R}	$\mathrm{T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$	\leq	2	mA
\mathbf{V}_{F}	$\mathrm{I}_{\mathrm{F}}=55 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	\leq	1.6	V
$\mathbf{V}_{\mathrm{T} 0}$	For power-loss calculations only		0.8	V
\mathbf{r}_{T}	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}$		15	$\mathrm{~m} \Omega$
$\mathbf{R}_{\text {thJc }}$	DC current	1.5	$\mathrm{~K} / \mathrm{W}$	
$\mathbf{R}_{\mathrm{thCH}}$	DC current (with heatsink compound)	0.4	$\mathrm{~K} / \mathrm{W}$	
\mathbf{a}	Maximum allowable acceleration		100	$\mathrm{~m} / \mathrm{s}^{2}$

TO-268 AA Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.9	5.1	. 193	. 201
A_{1}	2.7	2.9	. 106	. 114
A_{2}	. 02	. 25	. 001	. 010
b	1.15	1.45	. 045	. 057
b_{2}	1.9	2.1	. 75	. 83
C	. 4	. 65	. 016	. 026
D	13.80	14.00	. 543	. 551
E	15.85	16.05	. 624	. 632
E_{1}	13.3	13.6	. 524	. 535
e	5.45	BSC	. 215	SC
H	18.70	19.10	. 736	. 752
L	2.40	2.70	. 094	. 106
L1	1.20	1.40	. 047	. 055
L2	1.00	1.15	. 039	. 045
L3	0.25	BSC	. 010	SC
L4	3.80	4.10	. 150	. 161

$V_{\text {RRM }}=1200 / 1600 \mathrm{~V}$
 $\mathrm{I}_{\text {F(RMS) }}=2 \times 43 \mathrm{~A}$
 $\mathrm{I}_{\text {F(AV)M }}=2 \times 28 \mathrm{~A}$

TO-247 AD
Version A

TO-268 AA Version AT

ISOPLUS 247 ™

1 = Cathode, 2 = Anode/Cathode, 3 = Anode

Features

- International standard packages JEDEC TO-247 AD and TO-268 AA surface mountable
- For single and three phase bridge configuration
- Planar passivated chips
- Epoxy meets UL 94V-0 flammability classification
- Version AR isolated and UL registered E153432

TO-247 AD and ISOPLUS 247 ™

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D *	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

* ISOPLUS $247^{\text {TM }}$ without hole

Fig. 1 Forward current versus voltage drop per diode

Fig. 2 Surge overload current

Fig. 4 Power dissipation versus direct output current and ambient temperature, sine 180°

Fig. $3 I^{2} t$ versus time per diode

Fig. 5 Max. forward current versus case temperature

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.06075	0.0004
2	0.183	0.00256
3	0.3405	0.0045
4	0.543	0.0242
5	0.3728	0.15

Fig. 6 Transient thermal impedance junction to case

