imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

16-Bit Digital Signal Controllers for Digital Power Applications with Interconnected High-Speed PWM, ADC, PGA and Comparators

Operating Conditions

- 3.0V to 3.6V, -40°C to +85°C, DC to 70 MIPS
- 3.0V to 3.6V, -40°C to +125°C, DC to 60 MIPS

Flash Architecture

• 16 Kbytes-32 Kbytes of Program Flash

Core: 16-Bit dsPIC33E CPU

- Code-Efficient (C and Assembly) Architecture
- Two 40-Bit Wide Accumulators
- · Single-Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle Mixed-Sign MUL Plus Hardware Divide
- 32-Bit Multiply Support
- Two Additional Working Register Sets (reduces context switching)

Clock Management

- ±0.9% Internal Oscillator
- · Programmable PLLs and Oscillator Clock Sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timer (WDT)
- · Fast Wake-up and Start-up

Power Management

- Low-Power Management modes (Sleep, Idle, Doze)
- · Integrated Power-on Reset and Brown-out Reset
- 0.5 mA/MHz Dynamic Current (typical)
- 10 µA IPD Current (typical)

High-Speed PWM

- Three PWM Generators (two outputs per generator)
- Individual Time Base and Duty Cycle for each PWM
- 1.04 ns PWM Resolution (frequency, duty cycle, dead time and phase)
- Supports Center-Aligned, Redundant, Complementary and True Independent Output modes
- · Independent Fault and Current-Limit Inputs
- Output Override Control
- PWM Support for:
 - AC/DC, DC/DC, inverters, PFC, lighting

Advanced Analog Features

- · High-Speed ADC module:
 - 12-bit with 2 dedicated SAR ADC cores and one shared SAR ADC core
 - Up to 3.25 Msps conversion rate per ADC core @ 12-bit resolution
 - Dedicated result buffer for each analog channel
 - Flexible and independent ADC trigger sources
 - Two digital comparators
 - One oversampling filter
- Two Rail-to-Rail Comparators with Hysteresis:
 - Dedicated 12-bit Digital-to-Analog Converter (DAC) for each analog comparator
- Two Programmable Gain Amplifiers:
 - Single-ended or independent ground reference
 - Five selectable gains (4x, 8x, 16x, 32x and 64x)
 - 40 MHz gain bandwidth

Interconnected SMPS Peripherals

- Reduces CPU Interaction to Improve Performance
- Flexible PWM Trigger Options for ADC Conversions
- High-Speed Comparator Truncates PWM (15 ns typical):
 - Supports Cycle-by-Cycle Current mode control
 - Current Reset mode (variable frequency)

Timers/Output Compare/Input Capture

- Three 16-Bit and up to Two 32-Bit Timers/ Counters
- One Output Compare (OC) module, Configurable as Timers/Counters
- · One Input Capture (IC) module

Communication Interfaces

- One UART module (15 Mbps):
 - Supports LIN/J2602 protocols and $\text{IrDA}^{\texttt{®}}$
- One 4-Wire SPI module (15 Mbps)
- One I²C module (up to 1 Mbaud) with SMBus Support

Input/Output

- Sink/Source up to 12mA/15mA, respectively; Pin-Specific for Standard VOH/VOL
- 5V Tolerant Pins
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- External Interrupts on All I/O Pins
- Peripheral Pin Select (PPS) to allow Function Remap with Six Virtual I/Os

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1, -40°C to +125°C)
- Class B Safety Library, IEC 60730
- 4x4x0.6 mm and 6x6x0.5 mm UQFN Packages are Designed and Optimized to ease IPC9592B 2nd Level Temperature Cycle Qualification

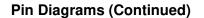
Debugger Development Support

- In-Circuit and In-Application Programming
- Three Program and One Complex Data Breakpoint
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace and Run-Time Watch

		ş			Rem	appa	ble P	eriph	erals							(GPIO)	
Device	Pins	Program Memory Bytes	RAM Bytes	Timers ⁽¹⁾	Input Capture	Output Compare	UART	IdS	External Interrupts ⁽²⁾	WMd	ADC Inputs	I ² C	ADC Cores	PGA	Analog Comparator	General Purpose I/O (GF	Packages
dsPIC33EP16GS202	28	16K	2K	3	1	1	1	1	3	3x2	12	1	3	2	2	21	SSOP, SOIC, QFN-S,
dsPIC33EP32GS202	28	32K	2K	3	1	1	1	1	3	3x2	12	1	3	2	2	21	UQFN (4x4 mm), UQFN (6x6 mm)

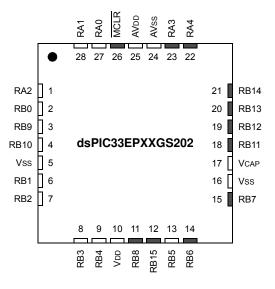
Note 1: The external clock for Timer1, Timer2 and Timer3 is remappable.

2: INT0 is not remappable; INT1 and INT2 are remappable.


TABLE 1: dsPIC33EPXXGS202 FAMILY DEVICES

Pin Diagrams

in SS(IC, DP		Pins are up to 5V tolerant
	MCLR 1 RA0 2 RA1 3 RA2 4 RB0 5 RB9 6 RB10 7 Vss 8 RB1 9 RB2 10 RB2 10 RB3 11 RB4 12 VDD 13 RB8 14	dsPIC33EPXXGS202	28 AVDD 27 AVSS 26 RA3 25 RA4 24 RB14 23 RB13 22 RB12 21 RB11 20 VCAP 19 VSS 18 RB7 17 RB6 16 RB5
PIN FL	JNCTION DESCRIPTIONS		15 RB15
PIN Fl		Pin	RB15
	JNCTION DESCRIPTIONS		
Pin	JNCTION DESCRIPTIONS Pin Function	Pin	Pin Function
Pin 1	JNCTION DESCRIPTIONS Pin Function MCLR	Pin 15	Pin Function PGEC3/ RP47 /RB15
Pin 1 2	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0	Pin 15 16	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5
Pin 1 2 3	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1	Pin 15 16 17	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6
Pin 1 2 3 4	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	Pin 15 16 17 18	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7
Pin 1 2 3 4 5	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	Pin 15 16 17 18 19	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss
Pin 1 2 3 4 5 6	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9	Pin 15 16 17 18 19 20	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP
Pin 1 2 3 4 5 6 7	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10	Pin 15 16 17 18 19 20 21	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11
Pin 1 2 3 4 5 6 7 8	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss	Pin 15 16 17 18 19 20 21 22	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12
Pin 1 2 3 4 5 6 7 8 9	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1	Pin 15 16 17 18 19 20 21 22 23	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13
Pin 1 2 3 4 5 6 7 8 9 10	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2	Pin 15 16 17 18 19 20 21 22 23 24	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 VSS VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14
Pin 1 2 3 4 5 6 7 8 9 10 11	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2 PGED2/AN8/INT0/RP35/RB3	Pin 15 16 17 18 19 20 21 22 23 24 25	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1H/RA4


Legend: Shaded pins are up to 5 VDC tolerant.

Note: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

28-Pin UQFN 4x4 mm, 28-Pin UQFN 6x6 mm, 28-Pin QFN-S 6x6 mm

= Pins are up to 5V tolerant

PIN FUNCTION DESCRIPTIONS

Pin	Pin Function	Pin	Pin Function
1	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	15	PGEC1/AN11/SDA1/ RP39 /RB7
2	AN3/PGA2P3/CMP1D/ CMP28/RP32/RB0	16	Vss
3	AN4/CMP2C/RP41/RB9	17	VCAP
4	AN5/CMP2D/ RP42 /RB10	18	TMS/PWM3H/ RP43 /RB11
5	Vss	19	TCK/PWM3L/ RP44 /RB12
6	OSC1/CLKI/AN6/RP33/RB1	20	PWM2H/ RP45 /RB13
7	OSC2/CLKO/AN7/PGA1N2/RP34/RB2	21	PWM2L/ RP46 /RB14
8	PGED2/AN8/INT0/RP35/RB3	22	PWM1H/RA4
9	PGEC2/ADTRG31/ RP36 /RB4	23	PWM1L/RA3
10	VDD	24	AVss
11	PGED3/ RP40 /RB8	25	AVDD
12	PGEC3/ RP47 /RB15	26	MCLR
13	TDO/AN9/PGA2N2/RP37/RB5	27	AN0/PGA1P1/CMP1A/RA0
14	PGED1/TDI/AN10/SCL1/RP38/RB6	28	AN1/PGA1P2/PGA2P1/CMP1B/RA1

Legend: Shaded pins are up to 5 VDC tolerant.

Note: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	11
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	61
6.0	Resets	69
7.0	Interrupt Controller	73
8.0	Oscillator Configuration	
9.0	Power-Saving Features	
10.0	I/O Ports	107
11.0	Timer1	133
12.0	Timer2/3	137
13.0	Input Capture	141
14.0	Output Compare	145
15.0	High-Speed PWM	151
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit (I ² C)	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	199
20.0	High-Speed Analog Comparator	229
21.0	Programmable Gain Amplifier (PGA)	
22.0	Special Features	239
23.0	Instruction Set Summary	251
24.0	Development Support	261
25.0	Electrical Characteristics	
26.0	DC and AC Device Characteristics Graphs	
27.0	Packaging Information	315
Appe	ndix A: Revision History	331
Index	۲	333
The N	Vicrochip Web Site	339
Custo	omer Change Notification Service	339
Custo	omer Support	339
Produ	uct Identification System	341

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

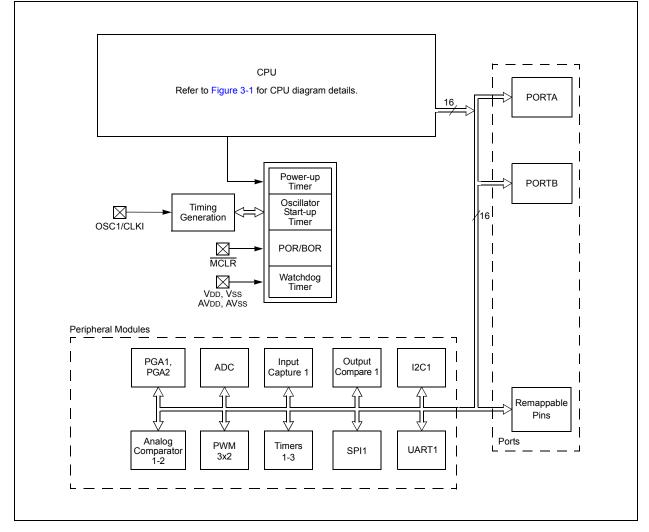
- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS202 Digital Signal Controller (DSC) devices.

The dsPIC33EPXXGS202 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS202 FAMILY BLOCK DIAGRAM

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN11	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CLKO	0	—	No	Always associated with OSC2 pin function.
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O		No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
IC1	I	ST	Yes	Capture Input 1.
OCFA OC1	 0	ST —	Yes Yes	Compare Fault A input (for compare channels). Compare Output 1.
INT0	I	ST	No	External Interrupt 0.
INT1	1	ST	Yes	External Interrupt 1.
INT2		ST	Yes	External Interrupt 2.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
T1CK	Ι	ST	Yes	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
T3CK	I	ST	Yes	Timer3 external clock input.
U1CTS	I	ST	Yes	UART1 Clear-to-Send.
U1RTS	0		Yes	UART1 Request-to-Send.
U1RX		ST	Yes	UART1 receive.
U1TX	0	ST	Yes	UART1 transmit. UART1 IrDA [®] baud clock output.
BCLK1			Yes	
SCK1 SDI1	I/O	ST ST	Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in.
SDO1			Yes	SPI1 data out.
SS1	1/0	ST	Yes	SPI1 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
TMS	I	ST	No	JTAG Test mode select pin.
ТСК	1	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
FLT1-FLT8	Ι	ST	Yes	PWM Fault Inputs 1 through 8.
PWM1L-PWM3L	0	—	No	PWM Low Outputs 1 through 3.
PWM1H-PWM3H	0		No	PWM High Outputs 1 through 3.
SYNCI1, SYNCI2		ST	Yes	PWM Synchronization Inputs 1 and 2.
SYNCO1, SYNCO2	0		Yes	PWM Synchronization Outputs 1 and 2.
CMP1A-CMP2A		Analog	No	Comparator Channels 1A through 2A inputs.
CMP1B-CMP2B CMP1C-CMP2C		Analog Analog	No No	Comparator Channels 1B through 2B inputs. Comparator Channels 1C through 2C inputs.
CMP1C-CMP2C CMP1D-CMP2D		Analog	No	Comparator Channels 1D through 2D inputs.
Legend: CMOS = C		-	1	

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
PPS = Peripheral Pin SelectAnalog = Analog input
O = Output
TTL = TTL input bufferP = Power
I = Input

TABLE 1-1: PIN		O DESC	RIPI	IONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
PGA1P1-PGA1P3	I	Analog	No	PGA1 Positive Inputs 1 through 3.
PGA1N2	I	Analog	No	PGA1 Negative Input 2.
PGA2P1-PGA2P3	1	Analog	No	PGA2 Positive Inputs 1 through 3.
PGA2N2	I	Analog	No	PGA2 Negative Input 2.
ADTRG31	I	ST	No	External ADC trigger source.
PGED1 PGEC1 PGED2 PGEC2 PGED3	I/O I I/O I I/O	ST ST ST ST ST	No No No No	Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3 MCLR	I/P	ST ST	No No	Clock input pin for Programming/Debugging Communication Channel 3.
AVDD	P	P	No	Master Clear (Reset) input. This pin is an active-low Reset to the device. Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.
VCAP	Р		No	CPU logic filter capacitor connection.
Vss	Р		No	Ground reference for logic and I/O pins.
Legend: CMOS = C	MOS co	ompatible	input	or output Analog = Analog input P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

Analog = Analog input O = Output TTL = TTL input buffer

```
P = Power
I = Input
```

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS202 family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

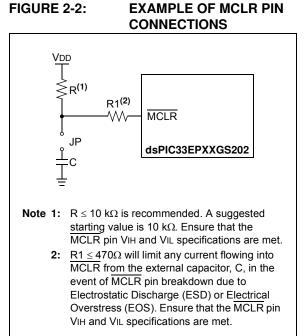
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 25.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 22.4 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

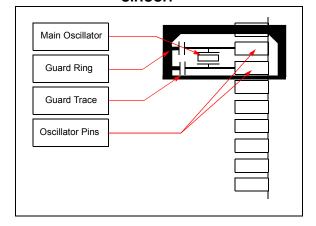
2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™ In-Circuit Emulator"* (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

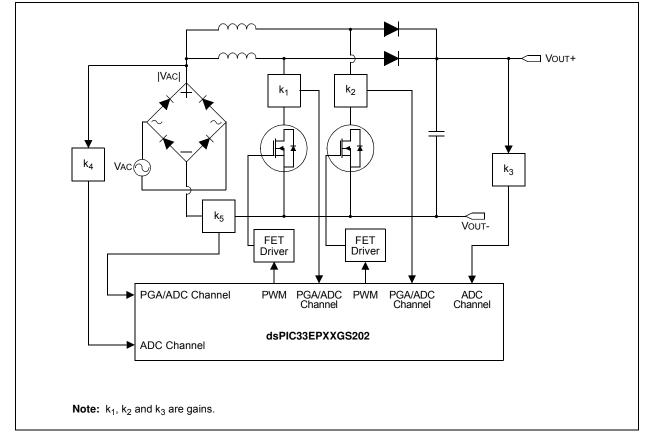
2.7 Oscillator Value Conditions on Device Start-up

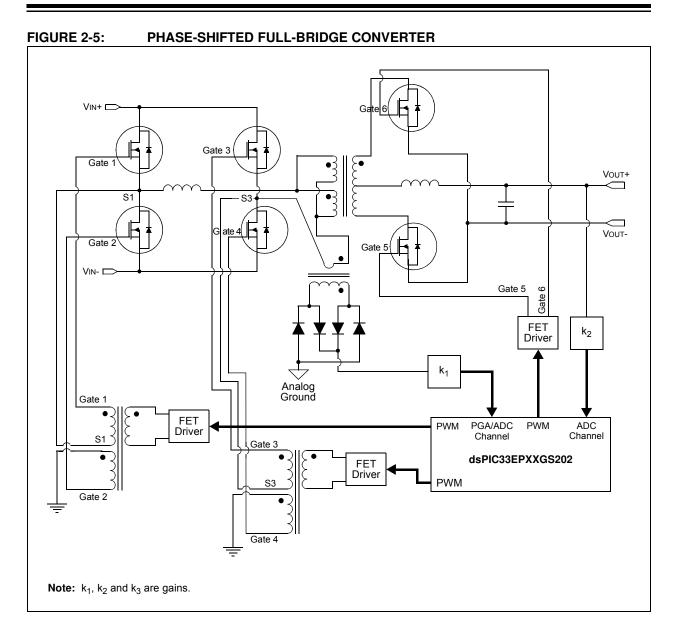
If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

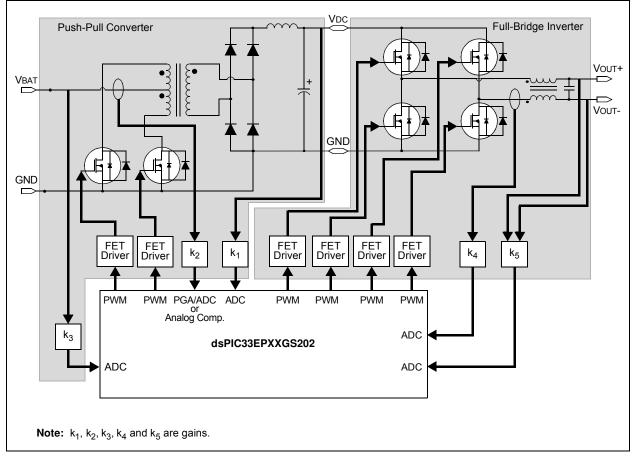
2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.


FIGURE 2-4: INTERLEAVED PFC

2.9 Targeted Applications


- Power Factor Correction (PFC)
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
- Resonant Converters
- DC/AC
 - Half/Full-Bridge Inverter
 - Resonant Inverter

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

FIGURE 2-6: OFF-LINE UPS

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXGS202 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EPXXGS202 devices include two Alternate Working register sets which consist of W0 through W14. The Alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The Alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register. The Alternate Working registers can also be accessed manually by using the CTXTSWP instruction. The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current and most recent, manually selected Working register sets.

3.2 Instruction Set

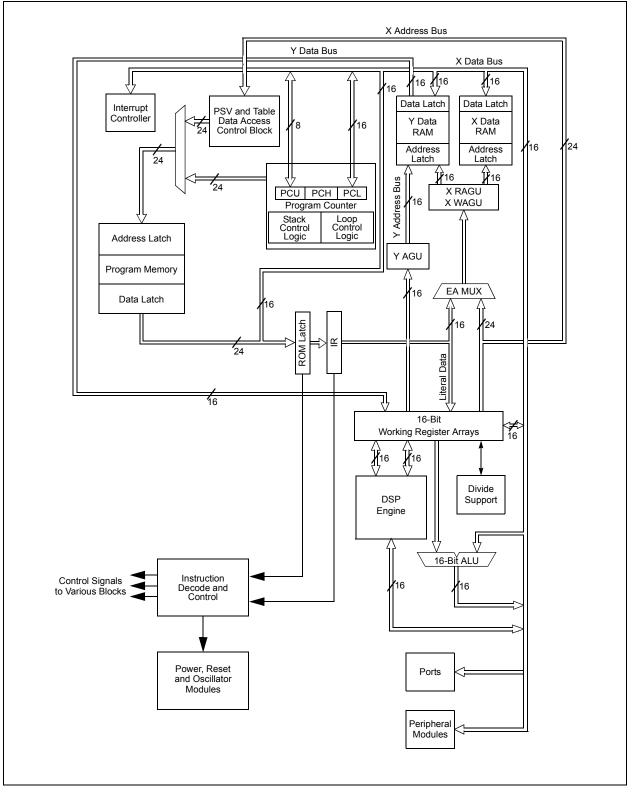
The instruction set for dsPIC33EPXXGS202 devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space (DS) can be addressed as 1K word or 2 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to "**Data Memory**" (DS70595) in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on PSV and table accesses.

On dsPIC33EPXXGS202 devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.


3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

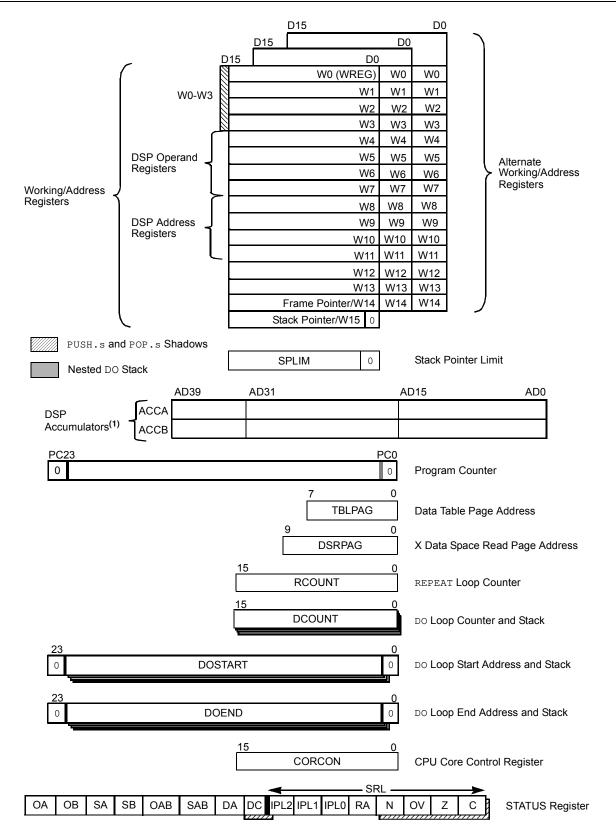
FIGURE 3-1: dsPIC33EPXXGS202 CPU BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXGS202 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXGS202 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 3-1.


TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS
IADEL J-I.	

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represents the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

FIGURE 3-2: PROGRAMMER'S MODEL

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

3.7 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0				
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC				
bit 15							bit				
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	D/14/0(2)		DANO	DANO	DAMO	D 444.0				
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	IPL1 ¹¹	IPL0	RA	N	OV	Z	C				
bit 7							bit				
Legend:		C = Clearable	bit								
R = Readable	e bit	W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at	POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	OA: Accumu	lator A Overflow	v Status bit								
		ator A has over									
		ator A has not o									
bit 14		lator B Overflow									
		ator B has overl ator B has not o									
bit 13		lator A Saturatio		tus bit ⁽³⁾							
		ator A is saturat			some time						
	0 = Accumula	ator A is not sat	urated								
bit 12		lator B Saturatio									
		ator B is saturat ator B is not sat		en saturated at	some time						
bit 11	0AB: 0A 0	OB Combined A	ccumulator C	verflow Status	bit						
		ators A or B hav									
bit 10	SAB: SA S	B Combined Ad	cumulator 'S	ticky' Status bit							
		ators A or B are Accumulator A o	,		turated at some	time					
bit 9	DA: DO Loop	Active bit									
	1 = DO loop in 0 = DO loop r	n progress ot in progress									
bit 8	•	U Half Carry/Bo	orrow bit								
	1 = A carry-o	out from the 4th sult occurred		for byte-sized o	lata) or 8th low-	order bit (for wo	ord-sized data				
	0 = No carry	r-out from the 4 the result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size				
Le		are concatenat n parentheses i			,						
	e IPI <2:0> Stat	tus hits are reac	l-only when th	NSTDIS bit	(INTCON1<15)) = 1					

- **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not

IPL<3> = 1.

be modified using bit operations.

:	 R/W-0 SATB	US1 R/W-1 SATDW C = Clearable	US0 R/W-0 ACCSAT	EDT ⁽¹⁾ R/C-0 IPL3 ⁽²⁾	DL2 R-0	DL1 R/W-0	DL0 bit 8
R/W-0 SATA bit 7 Legend: R = Readable bi -n = Value at PC bit 15	SATB	SATDW	-		-	R/W-0	
SATA bit 7 Legend: R = Readable bi -n = Value at PC bit 15	SATB	SATDW	-		-	R/W-0	
SATA bit 7 Legend: R = Readable bi -n = Value at PC bit 15	SATB	SATDW	-		-	R/W-0	
bit 7 Legend: R = Readable bi -n = Value at PC bit 15			ACCSAT	IPL3 ⁽²⁾		1	R/W-0
Legend: R = Readable bi -n = Value at PC bit 15	t	C = Clearable			SFA	RND	IF
R = Readable bi -n = Value at PC bit 15	t	C = Clearable					bit (
R = Readable bi -n = Value at PC bit 15	t		hit				
-n = Value at PC bit 15	· ·	W = Writable		II = Unimpler	mented bit, read	1 as '0'	
bit 15	R	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
					arca		own
	VAR: Variable	Exception Pro	cessing Later	ncy Control bit			
	1 = Variable e	xception proce	essing latency				
(0 = Fixed exc	eption process	ing latency				
bit 14	Unimplement	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits			
	11 = Reserve	-					
		gine multiplies	0	ו			
		gine multiplies					
bit 11 I	EDT: Early DC	Loop Termina	tion Control bi	it ⁽¹⁾			
	1 = Terminate 0 = No effect	s executing DO	loop at the er	nd of current lo	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	_evel Status bi	ts			
		ops are active					
•	•						
•							
	• 001 = 1 DO lo						
		ops are active					
		Saturation En tor A saturatio					
		tor A saturatio					
bit 6	SATB: ACCB	Saturation En	able bit				
:	1 = Accumula	tor B saturatio	n is enabled				
(0 = Accumula	tor B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write f	rom DSP Engi	ine Saturation	Enable bit		
		ce write satura ce write satura					
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit			
		ration (super sation (normal					
		terrupt Priority	-	oit 3 ⁽²⁾			
		rupt Priority Le					
		rupt Priority Le					

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address of 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address of Base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	—	—	_	_	CCTXI2	CCTXI1	CCTXI0
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	-	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'					
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits					
	111 = Reserved					
	•					
	•					
	•					
	011 = Reserved					
	010 = Alternate Working Register Set 2 is currently in use					
	001 = Alternate Working Register Set 1 is currently in use					
	000 = Default register set is currently in use					
bit 7-3	Unimplemented: Read as '0'					
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits					
	111 = Reserved					
	•					
	•					
	•					
	011 = Reserved					
	010 = Alternate Working Register Set 2 was most recently manually selected					
	001 = Alternate Working Register Set 1 was most recently manually selected					
	000 = Default register set was most recently manually selected					