

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

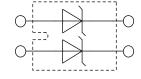
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Schottky Diode


High Performance Schottky Diode Low Loss and Soft Recovery Parallel legs

Part number

Very low Vf

low Irm values

DSS2x101-015A

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

 $V_{RRM} = 150 V$ $I_{FAV} = 2x 100 A$ $V_{F} = 0.77 V$

Backside: isolated

FL E72873

Package:

- Housing: SOT-227B (minibloc)
- Industry standard outline
- Cu base plate internal DCB isolated
- Isolation Voltage 3000 V
- Epoxy meets UL 94V-0
- RoHS compliant

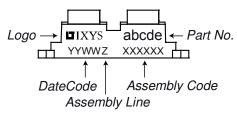
Improved thermal behaviour

• Extremely low switching losses

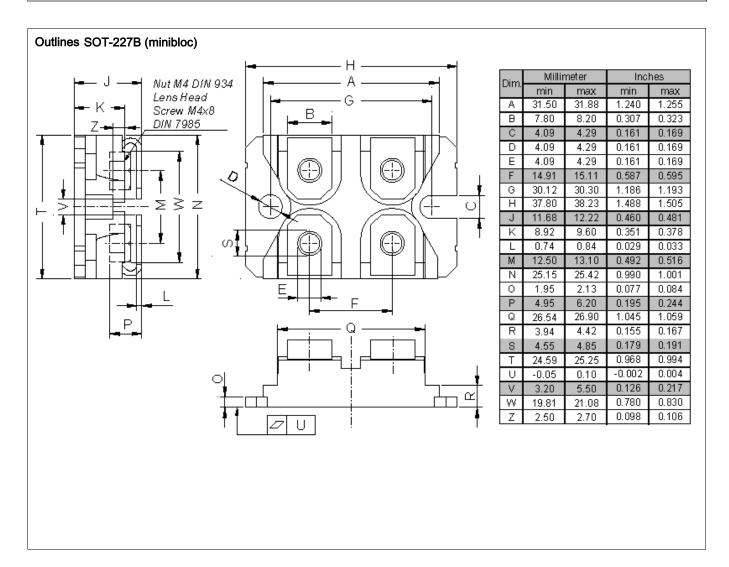
Features / Advantages:

- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching

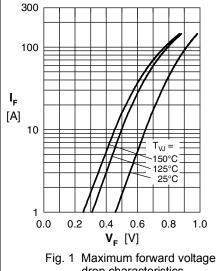
Ratings


Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25°C			150	V
I _R	reverse current	V _R = 150 V	$T_{VJ} = 25^{\circ}C$			4	mA
		$V_R = 150 V$	$T_{VJ} = 125$ °C			10	mΑ
V _F	forward voltage	I _F = 100 A	$T_{VJ} = 25^{\circ}C$			0.91	V
		I _F = 200 A				1.09	V
		I _F = 100 A	T _{VJ} = 125°C			0.77	V
		$I_F = 200 A$				0.99	V
I _{FAV}	average forward current	rectangular d = 0.5	T _C = 110°C			100	Α
V _{F0}	threshold voltage slope resistance for power loss calculation only		T _{vJ} = 150°C			0.53	V
r _F						2.1	mΩ
R _{thJC}	thermal resistance junction to case					0.40	K/W
T _{vJ}	virtual junction temperature			-40		150	°C
P _{tot}	total power dissipation		$T_{c} = 25^{\circ}C$			310	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1400	Α
C¹	junction capacitance	$V_R = 24 V$; $f = 1 MHz$	T _{VJ} = 25°C		962		pF

Rating	S


Symbol	Definition C	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current p	oer terminal					150	Α
RthCH	thermal resistance case to heatsink					0.10		K/W
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
M_{τ}	terminal torque				1.1		1.5	Nm
V _{ISOL}	isolation voltage t	= 1 second			3000			V
	t	= 1 minute			2500			V
d _{Spp/App}	creepage striking distance on surface thro	ough air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage striking distance on surface thro	ough air	terminal to backside	8.6	6.8			mm

Product Marking



Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key
Standard	DSS2x101-015A	DSS2x101-015A	Tube	10	478474

drop characteristics

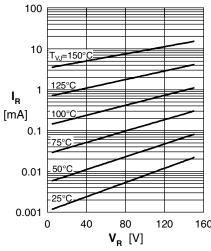


Fig. 2 Typ. reverse current I_R vs. reverse voltage V_R

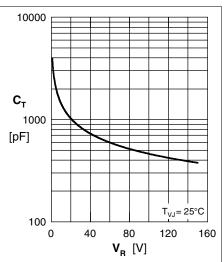


Fig. 3 Typ. junction capacitance C_T vs. reverse voltage V_R

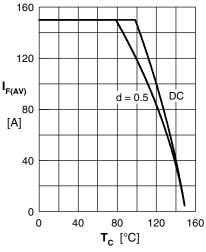


Fig. 4 Average forward current $I_{F(AV)}$ vs. case temperature T_C

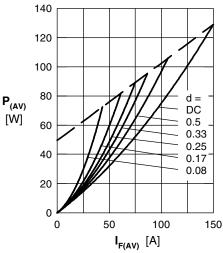


Fig. 5 Forward power loss characteristics

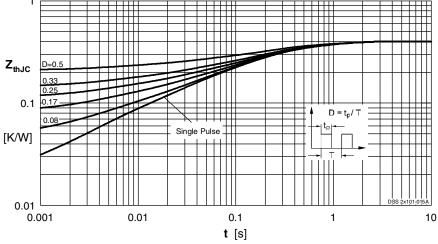


Fig. 6 Transient thermal impedance junction to case at various duty cycles

Note: All curves are per diode