

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Micro Commercial Components

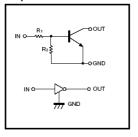
Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

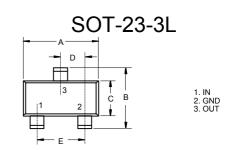
DTC144EKA

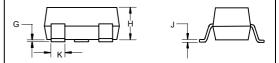
Features

- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors
- The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.
- Only the on/off conditions need to be set for operation, making device design easy


Absolute maximum ratings @ 25°

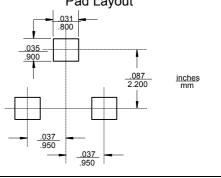
Symbol	Parameter	Min	Тур	Max	Unit
V_{CC}	Supply voltage		50		V
V_{IN}	Input voltage	-10		40	V
Ιο	Output current		100		mA
P _d	Power dissipation		200		mW
Tj	Junction temperature		150		$^{\circ}$
T _{stg}	Storage temperature	-55		150	$^{\circ}$


Electrical Characteristics @ 25℃


Symbol	Parameter	Min	Тур	Max	Unit
$V_{I(off)}$	Input voltage (V _{CC} =5V, I _O =100 μ A)			0.5	V
$V_{I(on)}$	(V _O =0.3V, I _O =2mA)				V
$V_{O(on)}$	Output voltage (I _O /I _I =10mA/0.5mA)			0.3	V
I _I	Input current (V _I =5V)			0.18	mA
$I_{O(off)}$	Output current (V _{CC} =50V, V _I =0)			0.5	μА
Gı	DC current gain (V ₀ =5V, I ₀ =5mA)	68			
R ₁	Input resistance	32.9	47	61.1	$K\Omega$
R ₂ /R ₁	Resistance ratio	0.8	1.0	1.2	
f⊤	Transition frequency $(V_{CE}=10V, I_{E}=5mA, f=100MHz)$		250		MHz

●Equivalent circuit

NPN Digital Transistors



DIMENSIONS

DIMENSIONS								
	INCHES		MM					
DIM	MIN	MAX	MIN	MAX	NOTE			
Α	.113	.117	2.87	2.97				
В	.108	.112	2.75	2.85				
С	.061	.065	1.55	1.65				
D	.036	.038	.925	.975				
Е	.073	.077	1.85	1.95				
G	.0016	.0039	.04	.100				
Η	.044	.049	1.12	1.25				
J	.006	.007	.14	.17				
K	.013	.015	.34	.37				

Suggested Solder Pad Layout

Revision: 1 2005/06/29

DTC144EKA

Electrical characteristic curves

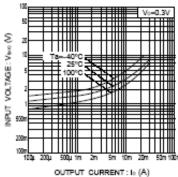


Fig.1 Input voltage vs. output current (ON characteristics)

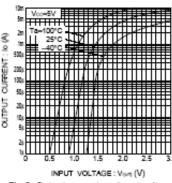


Fig.2 Output current vs. input voltage (OFF characteristics)

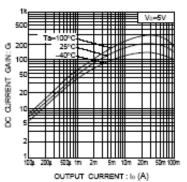


Fig.3 DC current gain vs. output current

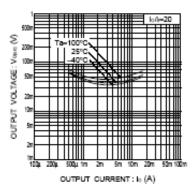


Fig.4 Output voltage vs. output current

Revision: 1 2005/06/29