: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Description

The Smart Power Relay E-1048-8C - is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status and monitoring functions

The 7 pin CUBIC version is designed for use with standard automotive relay sockets. A choice of current ratings is available from 1 A through 25 A . An operating voltage range of DC 9... 32 V allows the connection of DC 12 V and $D C 24 \mathrm{~V}$ loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type $\mathrm{E}-1048-8 \mathrm{C}$ combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8C is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected and monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock, vibration and dust.
- Compared to electro-mechanical relays, only a fraction of the closed-circuit current or switching current is needed. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit.
- The load circuit is permanently monitored for wire breakage.
- Two status outputs for control signal AS and group signal SF provide status indication. For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided. This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value.
- For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, for the identification the rated current (e. g. red = 10 A)

Technical Data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type	DC power supply with small R_{i} battery and generator etc.
Voltage ratings U_{N}	DC $12 \mathrm{~V} / \mathrm{DC} 24 \mathrm{~V}$
Operating voltage U_{S} :	DC 9... 32 V
Closed-circuit current I_{0} in the OFF condition	$<1 \mathrm{~mA}$
Load circuit LOAD	
Load output	Power MOSFET, high side switching HSS
Current rating range I_{N}	1 A ... 25 A (fixed rating) without load reduction up to $85^{\circ} \mathrm{C}$ (1 A... 20 A), 25 A bis $60^{\circ} \mathrm{C}$ ambient temperature $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}$: trip curve 1 $\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} . .25 \mathrm{~A}$: trip curve 2
Types of loads	resistive, inductive, capacitive, lamp loads, motors (depending on duration of inrush current)

Typical voltage drop $U_{O N}$ at rated current $I_{N}{ }^{1)}$

$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$	$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		

Switching point ${ }^{1)}$

Trip time ${ }^{1)}$
max. overload

Temperature disconnection
Parallel connection of channels for loads of 25 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section). integral
$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}: 40 \mathrm{~A}$
$I_{N}=15 \mathrm{~A} \ldots 25 \mathrm{~A}: 100 \mathrm{~A}$
$\mathrm{t}_{\text {on }} 5 \mathrm{~ms} / \mathrm{t}_{\text {off }} 1.5 \mathrm{~ms}$
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$
typically 200 ms with switch-on onto
overload and/or load increase on duty
$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}$: 60 A (at L/R = 3ms)
$\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} . .25 \mathrm{~A}: 250 \mathrm{~A}$ (at L/R $=3 \mathrm{~ms}$)
power transistor $>150{ }^{\circ} \mathrm{C}$

	identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
Free-wheeling diode	integral
for connected load	$I_{N}=1 \mathrm{~A} \ldots 10 \mathrm{~A}: 40 \mathrm{~A}$
Delay time 1)	$\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} \ldots 25 \mathrm{~A}: 100 \mathrm{~A}$
	$\mathrm{t}_{\text {on }} 5 \mathrm{~ms} / \mathrm{t}_{\text {off }} 1.5 \mathrm{~ms}$

Delay time ${ }^{1)}$

1) typical

hnical Data $\mathrm{T}_{\mathrm{A}}=2$	$\mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$
Wire breakage monitoring in ON and OFF condition of load ${ }^{1)}$	wire breakage thresholds: in OFF-condition (ver.1): $\mathrm{R}_{\text {load }}>100 \mathrm{k} \Omega$ in OFF-condition (ver.2): $\mathrm{R}_{\text {load }}>10 \mathrm{k} \Omega$ in ON-condition: $\mathrm{l}_{\text {load }}<0.2 \times \mathrm{I}_{\mathrm{N}}$ indication via group fault signalisation SF (switching output) Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear Possible options: - wire breakage indication only in ON condition - wire breakage indication only in OFF condition - no wire breakage indication)
Short circuit, overload in load circuit	- disconnection of load, indication via group signal SF - no automatic re-start - after remedy of the fault unit has to be reset via control input IN+
Control input IN+	
Control voltage IN_{+} Control current I_{E} Reset in the event of a failure	$0 . . .5 \mathrm{~V}=$ "OFF", 8.5... $32 \mathrm{~V}=$ "ON" 1... $10 \mathrm{~mA}(8.5 \ldots . \mathrm{DC} 32 \mathrm{~V})$ - via external control signal (low-high) at control input $\operatorname{IN+}$ - high) at control input $\mathrm{IN}+$ - via reset of supply voltage
Switching frequency at resistive or inductive load Edge of IN	$\begin{aligned} & \max .60 \mathrm{~Hz} \\ & <5 \mathrm{~ms} \end{aligned}$
Status and diagnostic functions	
Control signal AS	transistor output low side switching (LSS), open collector, short circuit and overload proof, max. load: DC $32 \mathrm{~V} / 2 \mathrm{~A}$ 0 V-level: when unit is set (at $\mathrm{IN}+=8.4 \ldots 32 \mathrm{~V}$)
Group signal SF	transistor output low side switching (LSS), open collector, short circuit and overload proof, load max. DC 32 V/2 A 0 V -level with overload and short circuit disconnection, wire breakage indication
Analogue output U(I)	voltage output 0-5 V proportional to load current: $\begin{aligned} & 1 \mathrm{~V}=0.2 \times \mathrm{I}_{\mathrm{N}} \\ & 5 \mathrm{~V}=1.0 \times \mathrm{I}_{\mathrm{N}} \end{aligned}$ 5 V ... typically $6.5 \mathrm{~V}=$ overload range tolerance: (for $l_{\text {load }}>0.2 \times \mathrm{I}_{\mathrm{N}}$) $\pm 8 \%$ of I_{N} max. output current 5 mA load resistance $>1 \mathrm{k} \Omega$ against GND
Trip times ${ }^{1)}$ definition of t_{9} reached 90% of final value	response time when switching on a load: $\mathrm{t}_{90}=20 \mathrm{~ms}$ response time of load change on duty: $\mathrm{t}_{90}=1 \mathrm{~ms}$
Visual status indication control signal AS group fault signal SF	LED yellow LED red
General data	
Reverse polarity protection	
Control circuit	yes
Load circuit	no (due to integral free-wheeling diode)
Status outputs	interference voltage resistance max. DC 32 V

[^0]Technical Data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Temperature range ambient temperature Temperature shutdown	1... 20 A: $-40 \ldots+85^{\circ} \mathrm{C}$ $25 \mathrm{~A}:-40 \ldots+60^{\circ} \mathrm{C}$ without load reduction power transistor $>150^{\circ} \mathrm{C}$
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$ test to DIN IEC 60068-2-14, Nb
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64 Vibration was tested with standard sockets for PCB mounting. Behaviour at vibrations depends on design, quality and age (number of push-in cycles) of the socket particularly regarding duration of the vibration and the mounting position
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing -8C4 IP30 to DIN 40050 housing -8C5 IP54 to DIN 40050, higher protection class upon request
EMC requirements	EMC directive: emitted interference EN 50081-1 noise immunity EN 61000-6-2 Automotive directive: emitted interference, noise immunity: 72/245/EWG und 2006/28/EG

Terminals of CUBIC version
(7 pin, standard)

Mounting:

Housing CUBIC version

max. dimensions
Materials

Mass

Approvals

CE, E1 logo
depending on version
5 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ and 2 blade terminals
$2.8 \mathrm{~mm} \times 0.6 \mathrm{~mm}$ to DIN 46244
Contact material CuZn37F44
on automotive relay socket 4-pole or 7-pole
$30 \times 30 \times 40 \mathrm{~mm}$ when plugged in $30 \times 30 \times 51.6 \mathrm{~mm}$ including terminals housing PA66-GF30
base plate PA6-GF30
to EMC directive and vehicles directive Approved by Kraftfahrt-Bundesamt approvals no. E1 10R-043880

Ordering Information

Type
E-1048-8C Smart Power Relay DC $12 \mathrm{~V} / 24 \mathrm{~V}-1 \mathrm{~A} . .25 \mathrm{~A}$
in CUBIC version
Housing / temperature range
4 with housing $-40^{\circ} \mathrm{C} . .85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
5 with housing $-40^{\circ} \mathrm{C} . . .85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{IN}=25 \mathrm{~A}\right)$ increased environmental requirements (IP protection class etc.) Control input
C with control input (+ control 8.5... 32 V)
LEDs
0 without
32 LEDs: AS yellow, SF red
Status output minus-switching
A without
D with AS and SF
Contents of group fault signal SF/
LED indication SF

0	without
1	short circuit / overload

4 short circuit / overload + wire breakage
Analogue output
V0 without
V1 $0 . . .5 \mathrm{~V}$
Characteristic curve
4200 ms standard switch-off delay with overload)
Voltage rating
J3 DC 12/24 V
Current ratings /
colour of label
1 A / black
2 A / grey
3 A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
15 A / blue
20 A / yellows
25 A / white
E-1048-8C 4 - C 3 D 4 V1-4 U3-20A
ordering example 1:7 pole version
E-1048-8C 4 - C 0 A $0 \quad$ V0-4 U3-5A
ordering example 2: 4 pole version

Preferred types

Preferred types	Standard current ratings (A)					
	5	7.5	10	15	20	25
E-1048-8C4-C3A1V0-4U3-	x	x	x	x	x	x

Approvals

Authority	Approval mark	Regulation
KBA	E1	ECE R 10

Dimensions „DELUXE" version (7 pin version)

Dimensions „BASIC Version" (4 pin version)

E-T.Å Smart Power Relay E-1048-8C...

Typical time/current characteristics (Tu = $25^{\circ} \mathrm{C}$)

Trip curve 1:

$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 71 / 2 \mathrm{~A}$ and 10 A (standard 200 ms)

Trip curve 2: $15 \mathrm{~A}, 20 \mathrm{~A}$ and 25 A (standard 200 ms)

Connection diagram

Pin selection CUBIC version (7 pin = "DELUXE")

Pin selection CUBIC version (4 pin = "BASIC")

E-1048-8C CUBIC version		
	1	
LINE +	2 (30)	plus US (DC $12 \mathrm{~V} / 24 \mathrm{~V}$)
	3	
IN_{+}	4 (86)	control input
GND	6 (31)	minus U_{S}
LOAD	8 (88a)	load output

() $\xlongequal{=}$ automotive terminal labeling

All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

[^0]: 1) typically
