: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

를TAㅇ Smart Power Relay E-1048-8C. (CUBIC)

Description

The Smart Power Relay E-1048-8C.- is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status indication

The 7 pin CUBIC version is designed for use with standard automotive relay sockets. A choice of current ratings is available from 1 A through 25 A . An operating voltage range of DC $9 \ldots . .32 \mathrm{~V}$ allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type $\mathrm{E}-1048-8 \mathrm{C}$ combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8C. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration.
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit, the trip curve is also suitable for smaller motor loads.
- The load circuit is permanently monitored for wire breakage.
- Two status outputs for control signal AS and group signal SF provide status indication. For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided. This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value.
- For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

E-1048-8C. CUBIC

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{U}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type
Voltage ratings U_{N}
Operating voltage U_{B} :

Load circuit LOAD

Load output
Max. current rating I_{N} Types of loads

Current rating range I_{N}
nduced current consumption
I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop U_{ON} at rated current $\mathrm{I}_{\mathrm{N}}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

I_{N}	$U_{O N}$	I_{N}	$U_{O N}$
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		

Switching point

Trip time (standard curve)

Current limitation

Temperature disconnection After trip
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$
typically 200 ms with switch-on onto overload and/or load increase on duty version 1: typically 75 A
version 2: typically 350 A
power transistor $>150{ }^{\circ} \mathrm{C}$

- resettable via external control signal (low-high) at control input IN+ - reset of supply voltage

Parallel connection of channels for loads of 25 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
version 1: max. $100 \mu \mathrm{~A}$
version 2: max. $500 \mu \mathrm{~A}$ integral
version 1: max. 40 A
version 2: max. 100 A

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{U}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$
Delay time $t_{\text {on }} / t_{\text {off }}$
(resistive load)
Wire breakage monitor
ON and OFF
condition of load
Short circuit, overload
in load circuit
typ. $5 \mathrm{~ms} /$ typ. 1.5 ms (EMC filter in control input)
wire breakage thresholds:
in OFF-condition (version1):
$\mathrm{R}_{\text {load }}>$ typically $100 \mathrm{k} \Omega$
in OFF-condition (version2):
$R_{\text {load }}>$ typically $10 \mathrm{k} \Omega$
in ON-condition: $I_{\text {load }}$ < typically $0.2 \times \mathrm{I}_{\mathrm{N}}$ indication via group fault signalisation FM (switching output)
Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear (possible options:

- wire breakage indication only in ON condition
- wire breakage indication only in OFF condition
- no wire breakage indication)
- disconnection of load, indication via group signal SF
- no automatic re-start
- after remedy of the fault unit has to be reset via control input IN+
Control input IN+

Control voltage IN_{+}	$0 \ldots .5 \mathrm{~V}=$ "OFF", $8.5 \ldots . .32 \mathrm{~V}=$ "ON"
Control current I_{E}	$1 \ldots .10 \mathrm{~mA}(8.5 \ldots \mathrm{DC} 32 \mathrm{~V})$
Reset in the event of a failure	- reset via external control signal (low
	- high) at control input $\mathrm{IN}+$
	- via reset of supply voltage
	possible, see max. switching frequency
Dimmer operation	

(e.g. PWM signal)

Switching frequency
at resistive or inductive load max. 100 Hz
Status and diagnostic functions
Control signal AS transistor output minus switching (LSS),

Group signal SF

Analogue output U(I)

Trip times
definition of t_{90}
reached 90% of final value

Visual status indication
control signal AS LED yellow
group fault signal SF LED red

General data

Reverse polarity protection
Control circuit
Load circuit
Status outputs
yes
no (due to integral free-wheeling diode)
interference voltage resistance max. DC 32 V

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Temperature range
 ambient temperature

- standard: $-40 \ldots+85^{\circ} \mathrm{C}$
without load reduction ($60^{\circ} \mathrm{C}$ at 25 A)
- for other temperature ranges please see ordering key

	see ordering key
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$ test to DIN IEC 60068-2-14, Nb
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2000 \mathrm{~Hz}$) test to DIN EN 60068-2-64
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing -8C4 IP30 to DIN 40050 housing -8C5 IP54 to DIN 40050, higher protection class upon request
EMC requirements	EMC directive: emitted interference EN 50081-1 noise immunity EN 61000-6-2 Automotive directive: emitted interference, noise immunity: 72/245/EW6 und 95 / 54 / E6

Terminals of CUBIC version

(7 pin, standard)
5 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ and 2 blade terminals
$2.8 \mathrm{~mm} \times 0.6 \mathrm{~mm}$ to DIN 46244
Contact material CuZn37F44

Mounting: \quad\begin{tabular}{c}

- on automotive relay socket 7 pole or

9 pole
\end{tabular}

Housing CUBIC
max. dimensions $30 \times 30 \times 40 \mathrm{~mm}$ when plugged in
Materials
$30 \times 30 \times 51.6 \mathrm{~mm}$ including terminals
CUBIC: housing PA66-GF30 base plate PA6-GF30
Mass approx. $23 \mathrm{~g} \ldots 43 \mathrm{~g}$, depending on version

Approvals

CE, e1 logo
according to EU, EMC and automotive directives, approvals no. e1 023880

Ordering Information

Type

E-1048-8C Smart Power Relay DC $12 \mathrm{~V} / 24 \mathrm{~V}$ - 1 A... 20 A (25 A)
in CUBIC housing
Housing / temperature range
4 with housing $-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
5 with housing $-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
increased environmental
requirements (IP protection class etc.)

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Dimensions CUBIC (7 pin version)

Dimensions BASIC (4 pin version)

Typical time/current characteristics (standard 200 ms)

Version 1: $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}$ and 10 A

Version 2: $15 \mathrm{~A}, 20 \mathrm{~A}$ and 25 A

Connection diagram

Pin selection (7 pin = "DELUXE")

Pin selection (4 pin = "BASIC")

