: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Description

The Smart Power Relay E-1048-81.- is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status indication

The 7 pin INLINE version is designed for use with various E-T-A terminal blocks, e. g. 17-P10-Si. A choice of current ratings is available from 1 A through 20 A . An operating voltage range of DC $9 . . .32 \mathrm{~V}$ allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together:

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type E-1048-81. combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8l. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit, the trip curve is also suitable for smaller motor loads.
- The load circuit is permanently monitored for wire breakage.
- Two status outputs for control signal AS and group signal SF provide status indication. For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided. This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value.
- For switching and monitoring loads of 20 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

E-1048-81... INLINE version

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type
Voltage ratings U_{N} Operating voltage U_{S} :

DC power supply with small R_{i} battery and generator etc.
DC 12 V/DC 24 V

Load circuit LOAD
Load output
Max. current rating I_{N}
Types of loads

Current rating range I_{N}

Induced current consumption I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop $U_{O N}$
at rated current $\mathrm{I}_{\mathrm{N}}\left(\right.$ at $25^{\circ} \mathrm{C}$)

$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$	$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$
1 A	50 mV	7.5 A	90 mV
2 A	55 mV	10 A	110 mV
3 A	60 mV	15 A	60 mV
5 A	80 mV	20 A	60 mV

Power MOSFET, high side switching 20 A
resistive, inductive, capacitive, lamp loads, motors (depending on duration of inrush current)
1 A... 15 A (fixed ratings) up to $85^{\circ} \mathrm{C}$ ambient without load reduction, 20 A up to $70^{\circ} \mathrm{C}$.
Two basic versions with factory preset ratings:
version 1: 1 A/2 A/3 A/5 A/7.5 A/10 A
version 2: $15 \mathrm{~A} / 20 \mathrm{~A}$

Switching point

Trip time (standard curve)

Current limitation

Temperature disconnection
After trip

Leakage current in OFF condition

Free-wheeling diode for connected load
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$ typically 200 ms with switch-on onto overload and/or load increase on duty version 1: typically 75 A
version 2: typically 350 A
power transistor $>150{ }^{\circ} \mathrm{C}$

- resettable via external control signal (low-high) at control input IN+ - reset of supply voltage

Parallel connection of channels for loads of 20 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
version 1: max. $100 \mu \mathrm{~A}$
version 2: max. $500 \mu \mathrm{~A}$
integral
version 1: max. 40 A
version 2: max. 100 A

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Delay time $t_{\text {on }} / t_{\text {off }}$ (resistive load)
Wire breakage monitori
ON and OFF
condition of load

typically 5 ms / typically 1.5 ms
(EMC filter in control input)
wire breakage thresholds:
in OFF-condition (version 1):
$\mathrm{R}_{\text {load }}>$ typically $100 \mathrm{k} \Omega$
in OFF-condition (version 2):
$\mathrm{R}_{\text {load }}>$ typically $10 \mathrm{k} \Omega$
in ON-condition: $I_{\text {load }}<$ typically $0.2 \times I_{N}$ indication via group fault signalisation SF (switching output)
Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear possible options:

- wire breakage indication only in ON condition
- wire breakage indication only in OFF condition
- no wire breakage indication)
- disconnection of load, indication via group signal SF
- no automatic re-start
- after remedy of the fault unit has to be reset via control input IN+

Control input IN+

Control voltage $\mathrm{IN}+$
$0 . .5 \mathrm{~V}=$ "OFF", 8.5 ... $32 \mathrm{~V}=$
"ON"
Control current $\mathrm{I}_{\mathrm{E}} \quad 1 . .10 \mathrm{~mA}(8.5 \ldots \mathrm{DC} 32 \mathrm{~V})$
Reset in the event of a failure - reset via external control signal (low

- high) at control input IN+
- via reset of supply voltage

Switching frequency
at resistive or inductive load max. 100 Hz

Status and diagnostic function

Control signal AS

Group signal SF

Analogue output U(I)

Trip times definition of t_{90} reached 90% of final value

Visual status indication

Control signal AS LED yellow
Group fault signal SF

General data

Reverse polarity protection
Control circuit
Load circuit
Status outputs

LED red
transistor output minus switching (LSS), open collector, short circuit and overload proof, max. load: DC $32 \mathrm{~V} / 2 \mathrm{~A}$
0 V-level: when unit is set
(at $\mathrm{IN}+=8.4 \ldots 32 \mathrm{~V}$)
transistor output minus switching (LSS), open collector, short circuit and overload proof, load max. DC $32 \mathrm{~V} / 2 \mathrm{~A}$
0 V-level with overload and short circuit disconnection, wire breakage indication voltage output $0-5 \mathrm{~V}$ proportional to load current:
$1 \mathrm{~V}=0.2 \times \mathrm{I}_{\mathrm{N}}$
$5 \mathrm{~V}=1.0 \times \mathrm{I}_{\mathrm{N}}$
$5 \mathrm{~V} . .$. typically $6.5 \mathrm{~V}=$ overload range tolerance: (for $\mathrm{I}_{\text {load }}>0.2 \times \mathrm{I}_{\mathrm{N}}$) $\pm 8 \%$ of I_{N}
max. output current 5 mA
load resistance $>1 \mathrm{k} \Omega$ against GND response time when switching on a load: $\mathrm{t}_{90}=$ typically 20 ms
response time of load change on duty: tgo = typically 1 ms
yes
no (due to integral free-wheeling diode) interference voltage resistance max. DC 32 V

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperatureat $\left.\mathrm{U}_{\mathrm{N}}\right)$

Temperature range
ambient temperature

	- for other temperature ranges please see ordering key
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$ test to DIN IEC 60068-2-14, Nb
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing IP30 to DIN 40050
EMC requirements	higher protection class upon request
	EMC directive: emitted interference EN 61000-6-3 noise immunity EN 61000-6-2
	Automotive directive: emitted interference, noise immunity: 72/245/EW6 und 95/54/E6

Terminals of INLINE version

 (7 pin, standard)Mounting:

Housing INLINE version

max. dimensions

Materials
Mass

7 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
to DIN 46244-A6.3-0.8
contact material CuZn37F37
copper-plated and tin-plated

- E-T-A socket type 17-P10-Si (max. load 16 A)
- on a pc board with 6.3 mm receptacles

Approvals
CE, e1 logo

INLINE:
$11.5 \times 50 \times 56 \mathrm{~mm}$ when plugged in $11.5 \times 50 \times 66 \mathrm{~mm}$ including terminals INLINE: PA66 approx. $23 \mathrm{~g} . .33 \mathrm{~g}$, depending on version
according to EU, EMC and automotive directives

Ordering Information

Type
E-1048-8I Smart Power Relay DC $12 \mathrm{~V} / 24 \mathrm{~V}-1$ A... 20 A
in INLINE version
Housing / temperature range
3 with housing $/ 70^{\circ} \mathrm{C}$ (without moisture condensation)
4 with housing / $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=20 \mathrm{~A}\right)$
C with control input (+ control 8.5... 32 V)
LEDs
0 without LEDs
32 LEDs: AS yellow, SF red
Status output minus-switching
A without
D with AS and SF
Contents of group fault signal SF/

	LED indication
0	without
1	short crait / overload

$\begin{array}{ll}1 & \text { short circuit / overload } \\ 3 & \text { short circuit / overload + wire breakage on }\end{array}$
4 short circuit / overload + wire breakage
off + wire breakage on
Analogue output
Vo without
V1 $0 . . .5 \mathrm{~V}$
Characteristic curve
4200 ms
(switch-off delay with overload)
Voltage rating U3 DC $12 / 24 \mathrm{~V}$

Current ratings /
colour of label
1 A / black
2 A/grey
3 A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
15 A / blue
$20 \mathrm{~A} /$ yellow
Available configurations:
part number (without options = "BASIC")
E-1048-81 3 - C 0 A 0 Vo-4 U3-... A
part number (various options)
E-1048-81 4 - C 0 A 0 V0-4 U3-... A
E-1048-81 4 - C 3 A 1 V0-4 U3-... A
E-1048-81 $4-C \quad 3 \quad D \quad 1 \quad$ V0-4 U3-... A
E-1048-81 4 - C 3 D 1 V1-4 U3-... A
E-1048-81 $4-C \quad 3 \quad D \quad 3 \quad V 0-4$ U3-... A
E-1048-81 4 - C 3 D 4 V0-4 U3-... A
part number (all options = "DELUXE")
E-1048-81 4 - C 3 D 4 V1-4 U3-... A

Preferred types

Preferred types	Standard current ratings (A)							
	1	2	3	5	7.5	10	15	20
E-1048-814-C3D1V1-4U3-	x	x	x	x	x	x	x	x
$\mathrm{E}-1048-813-\mathrm{C} 3 \mathrm{D} 1 \mathrm{~V} 0-4 \mathrm{U} 3-$	x	x	x	x	x	x	x	x
$\mathrm{E}-1048-814-\mathrm{C} 3 \mathrm{~A} 1 \mathrm{~V} 0-4 \mathrm{U} 3-$	x	x	x	x	x	x	x	x

Dimensions INLINE version (all options = "DELUXE")

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Connection diagram INLINE version

 (all options = "DELUXE")

Pin selection INLINE version

E-T『A゚ Smart Power Relay E-1048-81...

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Version 1: 1 A, $2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}$ and 10 A (standard 200 ms)

Version 2: 15 A and 20 A (standard 200 ms)

... times rated current I_{N}

Accessories for E-1048-8I.

Busbar (10-way) (supplied as a complete package) for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without termina

Insulating sleeving for busbar (10-way)
Y 30382401

2-way mounting socke

23-P10-Si
retaining clip Y 30058103 available

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), black (up to 20 A max. load) X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), blue (up to 20 A max. load)

2 mounting clips
Y 30050402
(2 pcs needed per unit)

Installation drawing with mounting clips Y 30050402

E E-TVA

5

