: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Description

The Smart Power Relay E-1048-8S is a remotely controllable electronic load disconnecting relay with two functions in a single unit:

- electronic relay
- electronic overcurrent protection

A choice of current ratings is available from 1 A through 30 A . An operating voltage range of DC $9 . . .32 \mathrm{~V}$ allows the connection of DC 12 V and DC 24 V loads.

It has been designed for installation in IP-protected enclosures. The optimised design allows reduction of space requirements up to 50% compared to standard electro-mechanical cubic relays. Power consumption is cut by factor 5 compared to standard electro-mechanical relays and allows gas saving and reduction of CO_{2} emissions.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together:

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection

Now type E-1048-8S combines these two functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8S is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched and protected:

- agricultural and construction machinery,
- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load.

Features

- The E-1048-8Slimline features integral power electronics and provides wear-free switching function, insensitive against shock, vibration and dust.
- Compared to electro-mechanical relays, only a fraction of the closed-circuit current or switching current is needed. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than $50 \mu \mathrm{~A}$ is absolutely necessary for battery buffered applications
- The load circuit is disconnected in the event of a short circuit.
- For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Load conditions are visually indicated by a bicolour LED (load activated: yellow LED lighted; load disconnected due to overload or short circuit: red LED lighted)
- An optional status output for group fault signalling "SF" provides status indication of the load circuit (overload/short circuit)

Technical Data ($\mathrm{T}_{\text {amb. }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}$)

Power supply LINE +

Type	DC power supply with small R_{i} battery and generator etc.
Voltage ratings U_{N}	DC $12 \mathrm{~V} / \mathrm{DC} 24 \mathrm{~V}$
Operating voltage U_{S}	DC 9... 32 V
Closed-circuit current I_{0} in the OFF condition ${ }^{1)}$	$<50 \mu \mathrm{~A}$
Load circuit LOAD	
Load output	Power MOSFET, high side switching
Current rating range I_{N}	1 A... 25 A (fixed ratings), without load reduction up to $85^{\circ} \mathrm{C}\left(25 \mathrm{~A} . . .70^{\circ} \mathrm{C}\right)$ $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} . . .10 \mathrm{~A}$: see trip curve 1 $I_{N}=15$ A... 25 A: see trip curve 2
Types of loads	resistive, inductive, capacitive, lamp loads, motors (depending on duration of inrush current)
Typical voltage drop U_{ON} at rated current $\mathrm{I}_{\mathrm{N}}\left(\right.$ at $\left.25{ }^{\circ} \mathrm{C}\right){ }^{1)}$	

I_{N}	U ${ }_{\text {ON }}$	I_{N}	UoN
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		
Switching p Trip time ${ }^{1)}$		typically $1.3 \times \mathrm{I}_{\mathrm{N}}$ $\left(-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}: 1.1 . .1 .5 \times \mathrm{I}_{\mathrm{N}}\right)$ typically 200 ms with switch-on onto overload and/or load increase on duty; can be modified in relation to specific projects.	
Max. overload		$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}: 60 \mathrm{~A}$ (at $\mathrm{L} / \mathrm{R}=3 \mathrm{~ms}$) $\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} . . .25 \mathrm{~A}: 200 \mathrm{~A}$ (at L/R $=3 \mathrm{~ms}$) short-circuit-proof switching output with overload disconnection after typically 200 ms at $\mathrm{I}_{\text {load }}>$ typically 1.3 x rated current power transistor $>150^{\circ} \mathrm{C}$ for loads of 25 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).	
Temperature disconnection Parallel connection of channels			
Free-wheeling diode for connected load		integral$\begin{aligned} & \mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots . .10 \mathrm{~A}: \max .40 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} . .25 \mathrm{~A}: \max .100 \mathrm{~A} \end{aligned}$	

1) typical

Technical Data ($\left.\mathrm{T}_{\text {amb. }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Delay time ${ }^{1)}$	$\mathrm{t}_{\text {on }} 0.5 \mathrm{~ms} / \mathrm{t}_{\text {off }} 1.5 \mathrm{~ms}$
Short circuit, overload in load circuit	- disconnection of load - no automatic re-start - after remedy of the fault unit has to be reset via control input IN+
Control input IN+	
Control voltage IN+ Control current $\mathrm{I}_{\mathrm{E}}{ }^{1)}$ Reset in the event of a failure	$0 . .5 \mathrm{~V}=$ "OFF", $8.5 \ldots 32 \mathrm{~V}=$ "ON" 1 mA at $12 \mathrm{~V} / 5 \mathrm{~mA}$ at 24 V - via external control signal (low - high) at control input IN+ - via reset of supply voltage
Rising edge of IN+	$<5 \mathrm{~ms}$
Status functions	
Group fault signal SF	transistor output minus-switching (LSS), open collector, short circuit and overload-proof; max. load DC $32 \mathrm{~V} /$ 2 A 0 V level; in the event of overload and short circuit disconnection
Visual status indication	
control current on (AS) disconnection overcurrent (SF)	yellow LED lighted red LED lighted

General data

Reverse polarity protection	
Control circuit	yes
Load circuit	no (due to integral free-wheeling diode)
Temperature range ambient temperature <Temperature shutdown	1... $20 \mathrm{~A}:-40 \ldots+85^{\circ} \mathrm{C}$ $25 \mathrm{~A}:-40 . . .70^{\circ} \mathrm{C}$ without load reduction power transistor $>150^{\circ} \mathrm{C}$
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$ test to DIN IEC 60068-2-14, Nb
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64 Vibration was tested with standard sockets for PCB mounting. Behaviour at vibrations depends on design, quality and age (number of push-in cycles) of the socket particularly regarding duration of the vibration and the mounting position
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion EMC requirements	test to DIN EN 60068-2-52, severity 3 EMC directive: emitted interference EN 61000-6-3 noise immunity EN 61000-6-2
Terminals	4 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ to DIN 46244-A6.3-0.8 contact material CuZn37F37 copper-plated and tin-plated
Dimensions	approx. $30 \times 45 \times 9 \mathrm{~mm}$ when plugged in $41 \times 45 \times 9 \mathrm{~mm}$ including terminals
Mass	approx. 13 g

Ordering Information

Type No.
E-1048-8S Smart Power Relay DC 12/24 V, ratings 1 through 25 A,

2-C3 without enclosure, temperature range $40 \ldots 85^{\circ} \mathrm{C}$
($70{ }^{\circ} \mathrm{C}$ at 25 A); LED indication: yellow AS (control

SLIMLINE design						
$2-\mathrm{C} 3 \begin{array}{l}\text { without enclosure, temperature ra } \\ \left(70^{\circ} \mathrm{C} \text { at } 25 \mathrm{~A}\right) \text {; LED indication: ye } \\ \text { signal), red SF (group fault signal) }\end{array}$						
	$\begin{array}{c}\text { Status output minus switching } \\ \mathrm{A} \quad \text { without }\end{array}$					

A without

1-4U3 - short circuit and overload indication, 200 ms
switch-off delay at overload; DC 12/24 V
Current ratings
1 A
2 A
2 A
3 A
7.5 A

10 A
15 A
20 A
I
E-1048-8S 2-C3 C 1-4U3-10A ordering example

Connection diagram SLIMLINE

E®ToA゚ Smart Power Relay E-1048-8S.

Dimensions SLIMLINE

Design: power semiconductor varies depending on the current rating

E-1048-8S2-C3C1-4U3

Design: power semiconductor varies depending on the current rating

Pin selection SLIMLINE

E-1048-8S.		17-P10-Si		
LINE +	(2)	(2)	[2(k)]	
GND	(5)	(5)	[12]	乙
SF	(7)	(7)	[24]	\square
$1 \mathrm{~N}+$	(4)			
LOAD	(1)		[1]	

pin 7 only available for versions with SF

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Trip curve 1
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7,5 \mathrm{~A}$ and 10 A (standard 200 ms)

Trip curve 2
$15 \mathrm{~A}, 20 \mathrm{~A}, 25$ and 30 A (standard 200 ms)

Accessories

Single mounting sockets (up to 16 A max. load)

$17-\mathrm{P} 10-\mathrm{Si}$
17-P70-Si
2-way mounting socket (up to 16 A max. load)
$23-\mathrm{P} 10-\mathrm{Si}$
$63-\mathrm{P} 10-\mathrm{Si}$

63-P10-Si

