imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE CHIP RDS DEMODULATOR

1 FEATURES

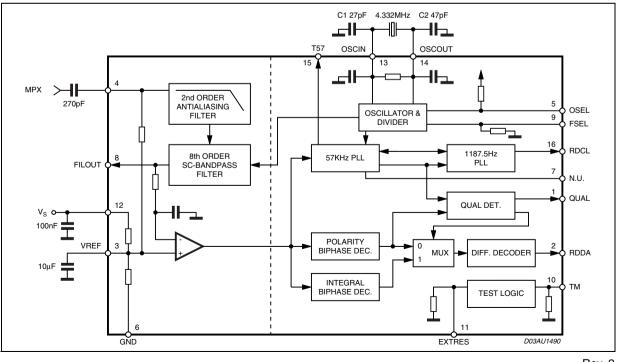
- VERY HIGH RDS DEMODULATION QUALITY WITH IMPROVED DIGITAL SIGNAL PROCESSING
- HIGH PERFORMANCE, 57KHz BANDPASS FILTER (8th ORDER)
- FILTER ADJUSTMENT FREE AND WITHOUT EXTERNAL COMPONENTS
- PURELY DIGITAL RDS DEMODULATION WITHOUT EXTERNAL COMPONENTS
- RDS SIGNAL QUALITY OUTPUT
- 4.332MHz CRYSTAL OSCILLATOR(8.664MHz OPTIONAL)
- LOW NOISE CMOS TECHNOLOGY
- LOW RADIATION

2 DESCRIPTION

The TDA7478 recovers the additional inaudible RDS information which is transmitted by FM radio broadcasting stations and operates in accordance with the

Figure 2. Block Diagram

Figure 1. Packages


Table 1. Order Codes

Part Number	Package
TDA7478D	SO16
E-TDA7478AD	TSSOP16

EBU (European Broadcasting Union) specifications.

The device is made up of two sections: a cascaded antialiasing + switched capacitors 8th bandpass filter for precise RDS band selection and a demodulating section that performs the extraction od RDS data stream (RDDA) and clock (RDCL), to be further processed by a suitable RDS decoder.

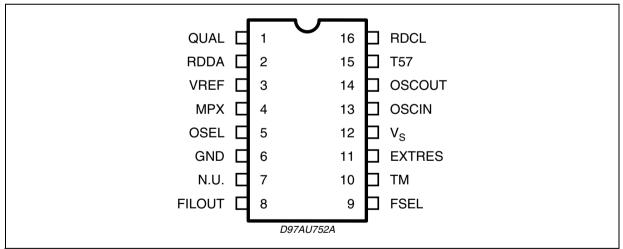

Output for RDS signal quality is also present.

Table 2. Pin Description

No pin	Name	Description				
1	QUAL	Output for signal quality indication (High = good)				
2	RDDA	RDS data output				
3	VREF	Reference voltage				
4	MPX	RDS input signal				
5	OSEL	Oscillator selector pin: - open, closed to V_S = quartz oscillator - closed to GND=external driven				
6	GND	Ground				
7	N.U.	Not Used (to be left open)				
8	FILOUT	Filter output				
9	FSEL	Frequency selector pin: - open = 4.332MHz - closed to VS = 8.664MHz				
10	TM	Test mode pin: - open = normal operation - closed to VS = testmode				
11	EXTRES	Reset pin: - open=run mode - closed to VS = reset condition				
12	Vs	Supply voltage				
13	OSCIN	Oscillator input				
14	OSCOUT	Oscillator output				
15	T57	Testing output pin: 57kHz clock output				
16	RDCL	RDS clock output 1187.5Hz				

Figure 3. Pin Connection (Top view)

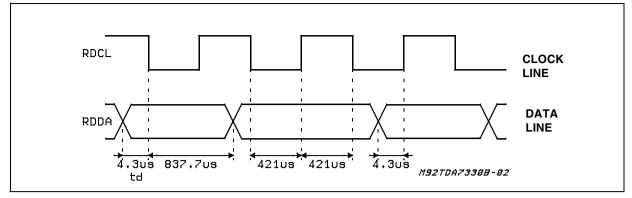
Table 3. Thermal Data

Symbol	Description	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max.	200	°C/W

۲/

Table 4. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	-0.3 to 7	V
T _{op}	Operating Temperature Range	-40 to 85	°C
T _{stg}	Storage Temperature	-55 to 150	°C


Table 5. Electrical Characteristcs

 $(T_{amb} = 25^{\circ}C, V_{S} = 5V, unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply voltage		4.5	5	5.5	V
I _S	Supply current			7.5	12.0	mA
FILTER						
f _C	Center frequency		56.6	57	57.4	kHz
BW	3dB Bandwidth		2.5	3	3.5	kHz
G	Gain	f = 57kHz	17	20	23	dB
А	Attenuation	$\Delta f \pm 4 kHz$		22		dB
		f = 38kHz		60		dB
		f = 67 kHz		45		dB
RI	Input impedance of MPX			120		KΩ
RL	Load impedance on FILOUT		1			MΩ
S/N	Signal to noise ratio	V _{IN} = 3mVRMS	30	40		dB
V _{IN}	MPX input signal	f = 19kHz; T3 ≤ 40dB ⁽¹⁾ f = 57kHz (RDS)			1000 50	mV _{RMS} mV _{RMS}
S _{RDS}	RDS Detection Sensitivity		1			mVrms
S _{ARI}	ARI Detection Sensitivity		3			mVrms
V _{REF}	Reference			V _S /2		V
DEMODU	LATOR		ł	•	•	•
Input pin Input pin	s (EXTRES, FSEL, TM) (OSEL)		all with ir with	nternal pu n internal		
I _{PD}	Input Current	V _{IN} = 5V (pull-down input)	15		30	μA
I _{PU}	Input Current	V _{IN} = 0V (pull-up input)	-25		-10	μA
V _{IH}	Input voltage high		$0.7\cdot V_{\text{S}}$	$0.8\cdot V_{\text{S}}$		V
VIL	Input voltage low			$0.2\cdot V_{S}$	$0.3\cdot V_{\text{S}}$	V
Output pi	ins (RDCL, RDDA, QUAL, T57)			1	1	
V _{OH}	Ouput voltage high	$I_L = 0.5 \text{mA}$	4	4.6		V
V _{OL}	Output voltage low	I _L = 0.5mA		0.4	1	V
OSCILLA	TOR			1	1	
VCLL	Input level OSCIN pin	OSEL = open circuit			1	V
VCLH	Input level OSCIN pin	OSEL = open circuit	4			V
	Amplitude OSCOUT	OSEL = open circuit		4.5		V
V _{PP}	Amplitude OSCIN (for external drive)	OSEL = GND, f = 4.332MHz OSEL = GND, f = 8.664MHz		100 120		mVpp mVpp

(1) The 3rd harmonic (57kHz) must be less than -40dB with respect to the input signal plus gain.

Figure 4. RDS timing diagram

3 OUTPUT TIMING

The RDS (1187.5Hz) output clock on RDCL line is synchronized to the incoming data. According to the internal PLL lock condition data change can result on the falling or on the rising clock edge. (see Fig. 1)Whichever clock edge is used by the decoder (rising or falling edge) the data will remain valid for 416.7 μ s after the clock transition.

4 OSCILLATOR CONTROLS (FSEL, OSEL)

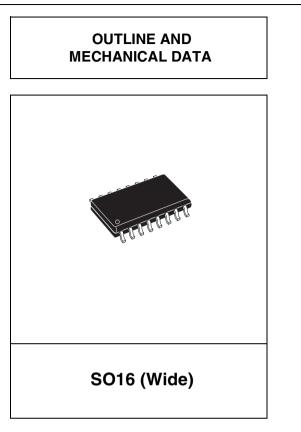
Two different crystal frequencies can be used. The adaption of the internal clock divider to the external crystal is achieved via the input pin FSEL. See the following table for reference:

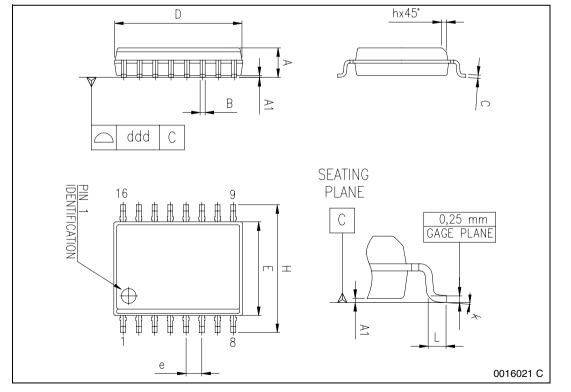
Table 6.

Crystal	FSEL (pin configuration)	
4.332MHz 8.664MHz	connected to GND or open connected to Vs	

A special mode is introduced to reduce EMI. With pin OSEL connected to GND the internal oscillator is switched off and an external sinusoidal frequency could be applied on OSCIN. The peak to peak voltage of this signal can be reduced down to 60mV.

In this mode the frequency selection via FSEL is still active.


Suggested values of C1 and C2 are shown in the following table:


Table 7.

Crystal	C1	C2
4.332MHz	27pF	47pF
8.664MHz	27pF	-

Figure 5. SO16 Mechanical Data & Package Dimensions

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
A	2.35		2.65	0.093		0.104	
A1	0.10		0.30	0.004		0.012	
В	0.33		0.51	0.013		0.200	
С	0.23		0.32	0.009		0.013	
D ⁽¹⁾	10.10		10.50	0.398		0.413	
Е	7.40		7.60	0.291		0.299	
е		1.27			0.050		
н	10.0		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.40		1.27	0.016		0.050	
k	0° (min.), 8° (max.)						
ddd			0.10			0.004	
 "D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side. 							

Figure 6. TSSOP16 Mechanical Data & Package Dimensions

DIM.		mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	OUTLINE AND MECHANICAL DATA	
А			1.200			0.047		
A1	0.050		0.150	0.002		0.006		
A2	0.800	1.000	1.050	0.031	0.039	0.041		
b	0.190		0.300	0.007		0.012		
с	0.090		0.200	0.005		0.009	SESSESS	
D (1)	4.900	5.000	5.100	0.114	0.118	0.122	SSSS	
Е	6.200	6.400	6.600	0.244	0.252	0.260		
E1 (1)	4.300	4.400	4.500	0.170	0.173	0.177	MAMILIU	
е		0.650			0.026			
L	0.450	0.600	0.750	0.018	0.024	0.030		
L1		1.000			0.039			
k		0)° (min.)	8° (max	.)			
aaa			0.100			0.004	TSSOP16 (Body 4.4mm)	
					b	A1		
ID	PIN 1 ENTIFICA					_	SEATING PLANE C GAGE PLANE	

Table 8. Revision History

Date	Revision	Description of Changes
July 2004	1	First Issue
November 2004	2	Add in the table 5 "RDS and ARI Detection Sensitivity" parameters.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57