: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

The Ultimate Fiber Amplifier for Maximum Ease of Use and High Performance

* UL certification including UL 991 testing and evaluation • Applicable standards: UL 3121-1 - Additional application testing and evaluations standards: UL 991 and SEMI S2-0200S

Features

Models with New Connector System Reduces Wiring, Saves Space, and Makes Maintenance Easier

First in the Industry	Patent Pending

In Amplifiers with wire-saving connectors, the power supply is distributed to 1-conductor slave connectors through a 3conductor master connector. This design has three major advantages.

1. Wiring time is significantly reduced.
2. Relay connectors are unnecessary, so wiring takes up less space and costs are reduced.
3. Storage and maintenance are simpler because it isn't necessary to distinguish between master connector and slave connectors on the Amplifier.

Super Digital Display with Auto Power Control (APC) Circuit

First in the Industry
The passage of time causes the intensity of the Sensor's lightemitting LED elements to deteriorate, which may make stable detection impossible.
The E3X-DA-N is the first series of Fiber Sensors to use an Auto Power Control (APC) circuit. This achieves strict detection by eliminating fluctuation in the digital value and is ideal for subtle detection such as stable detection of liquidcrystal glass.

Power Consumption Reduced by As Much As 70\%

Power consumption is reduced by as much as 70% from 1800 mW to 600 mW (when the digital display is OFF).

Digital Display Can Be Turned OFF or Dimmed during Operation
 Eco-mode

When the digital display is viewed infrequently during operation, current consumption can be reduced by dimming the display or turning it OFF entirely.
(Eco-mode can be set from the Mobile Console only.)

New Generation of Mobile Consoles the Size of Cellular Phones. Further Developing the Ultimate Power of Fiber Amplifiers.

Remote Setting and Adjustment
Perform settings, teaching, and fine adjustments at the end of the Fiber Unit.
Previously, settings and teaching could be performed only on the Amplifier. Now, however, using a Mobile Console enables these operations at the end of the fiber. Strict adjustments can be made while checking the workpiece position.

Display the light intensity and threshold at the same time.

With group teaching, teach multiple amplifiers simultaneously.
The tedious teaching that had to be performed separately for each Amplifier can now be performed for several Amplifiers at once using the Mobile Console.

Eliminate inconsistency by using group zero reset.
The group zero reset function can simultaneously reset the digital displays of multiple Amplifiers to 0 . This function is useful to minimize variation between Amplifier values.

Ordering Information

Amplifiers

Pre-wired Amplifiers

Type	Appearance	Control output	Model	
			NPN output	PNP output
Standard models		ON/OFF output	E3X-DA11-N 2M *2	E3X-DA41-N 2M *2
Monitor-output models		- ON/OFF output - Monitor output	E3X-DA21-N 2M	E3X-DA51-N 2M
Mark-detecting models (blue LED)			E3X-DAB11-N 2M	E3X-DAB41-N 2M
Mark-detecting models (green LED)			E3X-DAG11-N 2M	E3X-DAG41-N 2M
Infrared models			E3X-DAH11-N 2M	E3X-DAH41-N 2M
Differential-output model *1			E3X-DA11D 2M *2	---
Water-resistant models		ON/OFF output	E3X-DA11V 2M	E3X-DA41V 2M
Twin-output models			E3X-DA11TW 2M *2	E3X-DA41TW 2M *2

*1. For details, refer to page 6.
*2. Manufacturing of the E3X-DA \square TW Series was discontinued at the end of March 2012 Manufacture of the E3X-DA11-N/DA41-N/DA11D will be discontinued in March 2017

Amplifiers with Standard Connectors

[^0]Amplifier Connectors (Order Separately) Note: Seal provided as accessory.

Type	Appearance	Cable length	No. of conductors	Model
Master Connector			3	E3X-CN11
	2 m	4	E3X-CN21	
			1	E3X-CN12
			2	E3X-CN22

Combining Amplifiers and Connectors (Basically Amplifiers and Connectors are sold separately.)
Refer to the following tables when placing an order.

Amplifiers			Applicable Connectors (Order Separately)	
Type	NPN	PNP	Master Connector	Slave Connector
Standard models	E3X-DA6	E3X-DA8	E3X-CN11	E3X-CN12
Mark-detecting models	E3X-DAB6	E3X-DAB8		
	E3X-DAG6	E3X-DAG8		
Infrared models	E3X-DAH6	E3X-DAH8		
Differential-output model	E3X-DA6D	---		
Monitor-output models	E3X-DA7	E3X-DA9	E3X-CN21	E3X-CN22
Twin-output models	E3X-DA6TW	E3X-DA8TW		

When Using 5 Amplifiers

Amplifiers (5 Units)	1 Master Connector	4 Slave Connectors

Sensor I/O Connectors (Order Separately)

Mobile Console (Order Separately)

Appearance	Model	Remarks
E3X-MC11-C1	Mobile Console	
E3X-MC11	Mobile Console with head, cable, and AC adapter provided as accessories. Power supply method: chargeable battery	

Accessories (Order Separately)

Mounting Brackets

Appearance	Applicable model	Model	Quantity	Remarks
	E3X-DA-N Series	E39-L143		
	E3X-DA $\square \mathrm{V}$	E39-L148		--

Operating Instructions Sticker

Model	Remarks	
E39-Y1	Attach near the Sensor. \rightarrow Refer to page 25.	
End Plate		
Appearance	Model	Quantity

Amplifiers

Pre-wired Amplifiers

Type			Standard models	Monitoroutput models	Mark-det	ing models	Infrared models	Waterresistant models	Twin-output models
\qquad		NPN output	$\begin{aligned} & \text { E3X } \\ & \text {-DA11-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DA21-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAB11-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAG11-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAH11-N } \end{aligned}$	$\begin{aligned} & \hline \text { E3X } \\ & \text {-DA11V } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DA11TW } \end{aligned}$
		PNP output	$\begin{aligned} & \text { E3X } \\ & \text {-DA41-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DA51-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAB41-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAG41-N } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DAH41-N } \end{aligned}$	E3X -DA41V	$\begin{aligned} & \text { E3X } \\ & \text {-DA41TW } \end{aligned}$
Light source (wavelength)			Red LED (660 nm)		Blue LED (470 nm)	Green LED (525 nm)	Infrared LED (870 nm)	Red LED (660 nm)	
Power supply voltage			12 to $24 \mathrm{VDC} \pm 10 \%$, ripple (p-p) 10\% max.						
Power consumption			Normally: 960 mW max. (current consumption: 40 mA max. at power supply voltage of 24 VDC) Eco Mode: 720 mW max. (current consumption: 30 mA max. at power supply voltage of 24 VDC) Digital display not lit: 600 mW max. (current consumption: 25 mA max. at power supply voltage of 24 VDC)						
Control output	ON/OFF output		Load current: 50 mA (residual voltage (NPN/PNP): 1 V max., Open collector (NPN or PNP output, depending on the model) Light ON/Dark ON selectable						
	Monitor output		---	Load 1 to 5 VDC, $10 \mathrm{k} \Omega \mathrm{min}$.	---				
Protection circuit			Power supply reverse polarity, Output short-circuit protection, Mutual interference prevention (supported for up to 10 Units)						
Response time	Super-highspeed mode		0.25 ms for operation and reset respectively						0.5 ms for operation and reset respectively
	Standard mode		1 ms for operation and reset respectively						2 ms for operation and reset
	Super-longdistance mode		4 ms for operation and reset respectively						7 ms for operation and reset respectively
Sensitivity setting			Teaching or manual method						
Functions	Timer function		OFF-delay timer: 0 to 200 ms , 1 to 20 ms (set in 1-ms units); 20 to 200 ms (set in $5-\mathrm{ms}$ units) Using Mobile Console: OFF delay, ON delay, or one shot (selectable)						
	Automatic power control (APC)		Fiber-optic current digital control		---			Fiber-optic current digital control	
	Zero-reset		Negative values can be displayed.						
	Initial reset		Settings can be returned to defaults as required.						
	Monitor focus		-- Upper and lower limits can be set as required for every 100 digital values.		---				
Indicators			Operation indicator (orange), 7-segment digital incident level display (red), 7-segment digital incident level percentage display (red), threshold and excess gain 2-color double bar indicators (green and red), 7-segment digital threshold display (red)						
Display timing			Switching between normal/peak-hold/bottom-hold possible						
Display orientation			Switching between normal/reverse possible						
Optical axis adjustment			Optical axis adjustment possible (hyper-flashing function)						
Ambient illumination (receiver side)			Incandescent lamp: 10,000 Ix max. Sunlight: 20,000 Ix max.						

Amplifiers with Connectors

(Specifications different to those for Pre-wired Amplifiers)

	Type	Standard models	Monitor-output models	Mark-dete	g models	Infrared models	Waterresistant models*	Twin-output models
Output type	NPN output	E3X-DA6	E3X-DA7	E3X-DAB6	E3X-DAG6	E3X-DAH6	E3X -DA14V	$\begin{aligned} & \text { E3X } \\ & \text {-DA6TW } \end{aligned}$
Item	PNP output	E3X-DA8	E3X-DA9	E3X-DAB8	E3X-DAG8	E3X-DAH8	$\begin{aligned} & \text { E3X } \\ & \text {-DA44V } \end{aligned}$	$\begin{aligned} & \text { E3X } \\ & \text {-DA8TW } \end{aligned}$
Connection method		Standard connector					M8 connector	Standard connector
Weight (packed state)		Approx. 55 g					Approx. 65 g	Approx. 55 g

*The dielectric strength for water-resistant models is 500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .

Connectors

Item \quad Model	E3X-CN11/21/22	E3X-CN12
Rated current	2.5 A	
Rated voltage	50 V	
Contact resistance	$20 \mathrm{~m} \Omega$ max. (20 mVDC max., 100 mA max.) The figure is for connection to the Amplifier and the adjacent Connector. It does not include the conductor resistance of the cable.	
No. of insertions (durability)	50 times The figure for the number of insertions is for connection to the Amplifier and the adjacent Connector.	
Material	Housing	Polybutylene terephthalate (PBT)
	Contacts	Phosphor bronze/gold-plated nickel
Weight (packed state)	Approx. 55 g	

Mobile Console

| Item Model |
| :--- |\quad E3X-MC11 \quad.

Digital Fiber Amplifiers with Differential Outputs (E3X-DA11D/E3X-DA6D)
 Characteristics of Applicable Fiber Units
 Through-beam Fiber Units

Sensitivity selection 11-level setting	Sensing d	(mm) (The	ures in paren	ses ap	n using the	F1 Lens Unit.)	Standard object (mm) *1 (min. sensing object *2: opaque)
	HIGH			LOW			
	1	2	3 to 11	1	2	3 to 11	
Fiber UnitResponse time	$\begin{aligned} & 270 \text { or } \\ & 570 \mu \mathrm{~s} \end{aligned}$	0.5 or 1 ms	1 to 200 ms or 2 to 400 ms	$\begin{aligned} & 270 \text { or } \\ & 570 \mu \mathrm{~s} \end{aligned}$	0.5 or 1 ms	1 to 200 ms or 2 to 400 ms	
E32-T11R	240 (1680)	280 (1960)	370 (2590)	140 (980)	180 (1260)	240 (1680)	1 dia (0.01 dia)
E32-T21R	50	60	80	30	40	50	1 dia. (0.01 dia.)
E32-T16WR	580	690	910	350	450	580	(0.3 dia.) *1
E32-T16PR	380	450	600	230	290	380	(0.2 dia.) *2

*1. These values are for sensing objects that are moving.
*2. This value applies when the response time is set to 3 to 11 . An object of this value is detectable if the temperature changes within the range of ambient operating temperature. (The value is for sensing objects that are moving.)
*3. The values given in the above table are those that can be detected at a digital value of 1,000 in each sensing area.

Reflective Fiber Units

Sensitivity selection 11-level setting	Sensing distance (mm) *1						Standard object (mm) *2 (min. sensing object *3: opaque)
	HIGH			LOW			
	1	2	3-11	1	2	3-11	
Fiber UnitResponse time	$\begin{aligned} & 270 \text { or } \\ & 570 \mu \mathbf{s} \end{aligned}$	0.5 or 1 ms	1 to 200 ms or 2 to 400 ms	$\begin{aligned} & 270 \text { or } \\ & 570 \mu \mathrm{~s} \end{aligned}$	0.5 or 1 ms	1 to 200 ms or 2 to 400 ms	
E32-D11R	80	90	120	45	60	80	$\begin{aligned} & 150 \times 150 \\ & (0.01 \text { dia.) } \end{aligned}$
E32-D21R	13	15	20	7	10	13	25×25 (0.01 dia.)

*1. Sensing distances are given for white paper.
*2. These values are for sensing objects that are moving.
*3. This value applies when the response time is set to 3 to 11 . An object of this value is detectable if the temperature changes within the range of ambient operating temperature. (The value is for sensing objects that are moving.)

Differences Compared with E3X-DA-N Amplifier

ItemType		Differential-output Models (Edge-detection Models)					
		Pre-wired Wire-saving connector					
		E3X-DA11D		E3X-DA6D			
Current consumption		960 mW max. (current consumption: 40 mA max. at power supply voltage of 24 VDC)					
Control output	ON/OFF output	Load current: 50 mA max., (Residual voltage: 1 V max. for NPN/PNP output) Open collector Switchable between Light ON (ON at edge detection) and Dark ON (OFF at edge detection)					
Detection mode		Switchable between single edge and double edge detection mode					
Response time		Single edge: Can be set to $270 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 30 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}$, or 200 ms . Double edge: Can be set to $570 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 30 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 200 \mathrm{~ms}$ or 400 ms .					
Functions	Timer functions	Light ON: OFF-delay timer, Dark ON: ON-delay timer 0 to 5 s (1 to 20 ms : 1 -ms units, 20 to 200 ms : $5-\mathrm{ms}$ units, 200 ms to 1 s : $100 \mathrm{~ms}, 1$ to 5 s : 1 -s units)					
	APC	Yes					
	Zero-reset	Yes (Negative values can be displayed.)					
	Initial reset	Yes (Settings can be returned to defaults.)					
	Sensitivity selection	Yes (HIGH/LOW)					
	Teaching level	One-point teaching level can be varied from 1\% to 50\% in increments of 1\%					
Indicators		Operation indicator (orange), 7 -segment digital incident level display (red), 7 -segment digital detection level display (red)					

For other information, refer to the instruction manual supplied with the product.

Engineering Data (Reference Value)

E3X-DA-N/E3X-DA \square V/E3X-DA \square TW

Parallel Operating Range At maximum sensitivity. (Use for optical axis adjustment at installation.)

Through-beam

E32-T11L

Through-beam
E32-TC200

Through-beam
E32-T12R

Through-beam
E32-T11

Through-beam

E32-T11L + E39-F1 (separately sold Long-distance Lens Unit)

Through-beam
E32-TC200 + E39-F1 (separately sold Long-distance Lens Unit)

Through-beam
E32-T21R

Through-beam
E32-T22B

Through-beam
E32-T12L

Through-beam
E32-T11R

Through-beam
E32-T22R

Through-beam
E32-T14LR

Through-beam

 E32-T24R

Through-beam
E32-T61

Through-beam

E32-T24S

Through-beam

E32-T16J

Through-beam
E32-T16P

Through-beam E32-T81R

Through-beam
E32-T61 + E39-F1 (separately sold Long-distance Lens Unit)

Through-beam
E32-T16W

Through-beam

E32-T16J

Through-beam

E32-T16PR

Through-beam
E32-T51

Through-beam
E32-T22S

Through-beam
E32-T16WR

Through-beam
E32-T16JR

Operating Range With standard sensing object at maximum sensitivity. (Use for the positioning of the object and Sensor.)

Reflective

E32-D21L

Reflective
E32-D12R

Reflective

E32-D33

Reflective
 E32-D22B

Reflective

E32-DC200

Reflective
E32-D21R

Reflective
E32-D331

Reflective
E32-C31

Reflective
E32-D11R

Reflective
E32-D22R

Reflective

E32-D21B

Reflective

E32-C41

Reflective

E32-C42

Reflective

E32-D24

Reflective

E32-D36P1

Limited Reflective

E32-L25L

Reflective

E32-D32

Reflective
 E32-D24R

Reflective

E32-D36P1

Reflective
E32-D14LR

Reflective

E32-D61

Reflective
E32-L56E \square

Excess Gain Ratio vs. Distance With standard sensing object at maximum sensitivity.

Reflective
E32-DC200

Hysteresis vs. Sensing Distance Reflective
E32-D11L

Reflective

E32-D21L

Repeat Accuracy vs. Sensing Distance Reflective

E32-DC200

E3X-DA-N

Monitor Output vs. Distance (Standard Mode)

Through-beam
E32-TC200

Reflective

E32-DC200

E3X-DAB-N/E3X-DAG-N

Parallel Operating Range At maximum sensitivity. (Use for optical axis adjustment at installation.)

Through-beam

E32-TC200

Through-beam

E32-TC200 + E39-F1(separately sold Long-distance Lens Unit)

Operating Range With standard sensing object at maximum sensitivity. (Use for the positioning of the object and Sensor.)

Reflective

Reflective
E32-CC200

Limited Reflective
E32-D11L

E3X-DAH-N

Parallel Operating Range At maximum sensitivity. (Use for optical axis adjustment at installation.)

Through-beam
E32-TC200

Through-beam
E32-T11L
Through-beam
E32-T14

Operating Range With standard sensing object at maximum sensitivity. (Use for the positioning of the object and Sensor.)

Reflective

E32-DC200

Reflective

E32-D11L

Limited Reflective
E32-CC200

For other information on Fiber Units, refer to the Fiber Sensors Best Selection Catalog (Cat. No. E353).

Technical Reference (for E3X-DA-TW Twin-output Models)

Output Patterns for Normal Operation

Outputs 1 and 2 can be set to operate independently and either Light ON mode or Dark ON mode can be selected (independently) for channels 1and 2 making a total of 4 possible output patterns.

Output Patterns for Area Sensing This series includes models equipped with area sensing functionality, a first for Digital Fiber Amplifiers. This functionality can be used to monitor whether the incident level is inside or outside the threshold area. The 2 output patterns below are possible for this kind of operation.

ON inside threshold area			
ON outside threshold area			

Note: Output 2 is always OFF.

I/O Circuit Diagrams

NPN Output

Model	Operation mode	Timing charts	Mode selector switch	Output circuit
E3X-DA11-N E3X-DAB11-N E3X-DAG11-N E3X-DAH11-N E3X-DA11V E3X-DA6 E3X-DAB6 E3X-DAG6 E3X-DAH6 E3X-DA14V	Light-ON Dark-ON		L-ON (LIGHT ON) D-ON (DARK ON)	- Connector Pin Arrangement (M-8 Connector only) Note: Pin 2 is not used.
$\begin{aligned} & \text { E3X-DA21-N } \\ & \text { E3X-DA7 } \end{aligned}$	Light-ON Dark-ON		L-ON (LIGHT ON) D-ON (DARK ON)	* Load resistance: $10 \mathrm{k} \Omega \mathrm{min}$.
$\begin{aligned} & \text { E3X-DA11TW } \\ & \text { E3X-DA6TW } \end{aligned}$	Light-ON Dark-ON		L-ON (LIGHT ON) D-ON (DARK ON)	

Note: With E3X-DA \square TW models, only channel 1 is output when set for area sensing operation.
LIGHT ON: ON when the incident level is between the thresholds for channels 1 and 2.
DARK ON: OFF when the incident level is between the thresholds for channels 1 and 2. (Channel 2 is always OFF.)

Sensor I/O Connectors for Models with M8 Connectors

Classifi- cation	Wire colors	Connection pin No.	Application
DC	Brown	1	Power supply (+V)
	White	2	---
	Blue	3	Power supply (0 V)
	Black	4	Output

[^1]PNP Output

Model	Operation mode	Timing charts	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3X-DA41-N } \\ & \text { E3X-DAB41-N } \\ & \text { E3X-DAG41-N } \\ & \text { E3X-DAH41-N } \\ & \text { E3X-DA41V } \\ & \text { E3X-DA8 } \\ & \text { E3X-DAB8 } \\ & \text { E3X-DAG8 } \\ & \text { E3X-DAH8 } \\ & \text { E3X-DA44V } \end{aligned}$	Light-ON		L-ON (LIGHT ON) D-ON (DARK ON)	
$\begin{aligned} & \text { E3X-DA51-N } \\ & \text { E3X-DA9 } \end{aligned}$	Light-ON Dark-ON	(Between blue and black)	L-ON (LIGHT ON) D-ON (DARK ON)	* Load resistance: $10 \mathrm{k} \Omega \mathrm{min}$.
$\begin{aligned} & \text { E3X-DA41TW } \\ & \text { E3X-DA8TW } \end{aligned}$	Light-ON Dark-ON	(Between blue and black) (Between blue and black)	L-ON (LIGHT ON) D-ON (DARK ON)	

Note: With E3X-DA \square TW models, only channel 1 is output when set for area sensing operation.
LIGHT ON: ON when the incident level is between the thresholds for channels 1 and 2.
DARK ON: OFF when the incident level is between the thresholds for channels 1 and 2. (Channel 2 is always OFF.)
Sensor I/O Connectors for Models with M8 Connectors

Classi- fication	Wire colors	Connection pin No.	Application
DC	Brown	1	Power supply (+V)
	White	2	---
	Blue	3	Power supply (0 V)
	Black	4	Output

Note: Pin 2 is not used.

Connection

Connection with K3NX-VD2 \square Process Meter

Note 1. Various I/O Units are available for the K3NX. Select an appropriate output type depending on the application.
2. This wiring is for the K3NX with DC power supply specifications and the Monitor (Analog) Sensor with DC power supply specifications. Check respective power supply specifications before wiring.
*Use this service power supply for the Sensor with reference to the *Use this service power supply for the
power consumption of each Sensor.

Nomenclature

Amplifiers

Standard, Monitor-output, Mark-detecting, Infrared, and Water-resistant Models

Twin-output Models

Operation Indicator ON when output is ON .

Channel-selection Switch
Use to switch between channels 1 and 2.
Mode Selector
Use to select SET, ADJ, or RUN mode.

Amplifier Adjustments

All Models

1 Changing the Display (RUN Mode)

Manual Tuning (Fine Sensitivity Adjustment) in ADJ Mode Perform fine sensitivity adjustment after teaching and manual tuning (without using the teaching function) in the way shown below:

The items displayed in ADJ mode vary with the display setting in RUN mode.

RUN mode			
Digital incident level			
Digital percent			
Analog value			ADJ mode
:---			
Digital threshold			
Digital percent			
Analog value			

2 Zero-reset (RUN Mode)

*There is no limit on the number of times zero-reset can be used.

3 Initial Reset (SET Mode)

4 Setting Functions in SET Mode

Twin-output Models

$4 \quad$ Setting Functions (SET Mode)

All Models

Teaching (SET Mode)

- The four types of teaching given below are available.
- Once the setting is made, the Amplifier operates according to the settings. The red level display will flash if a teaching error occurs. In that case, repeat the whole teaching procedure.

Maximum Sensitivity Setting

Step	Operation	
1	Set the mode selector to SET.	$\xrightarrow{\text { SET }}$
2	Press the TEACH button for at least 3 seconds.	$0<3 \mathrm{~s}$
3	Setting is complete when the level display changes from red to green. The level display will display the digital incident level later.	
4	Set to RUN mode.	$\square^{\text {RUN }}$

One-point Without-object Teaching

Step	Operation	
1	Set the mode selector to SET.	SET
2	Press the TEACH button for approximately 1 second.	TEACH
3	Teaching is complete when the red level display is lit. The level display will display the digital incident level later.	0010101018
4	Set to RUN mode.	${ }_{\text {RuN }}^{\text {Run }}$
5	The threshold is automatically set with the object.	

Note: If one-point teaching is not available because the difference in level is too fine, try two-point teaching.
Operating Mode Selector

Operating mode		Operation
Light-ON	L-ON	L■(Factory-set)
Dark-ON	D-ON	\square

Note: There is no operating mode selector for twin-output models.

Two-point With/Without-object Teaching

Step	Operation	
1	Set the mode selector to SET.	SET
2	Press the TEACH button for approximately 1 second when the object is at the sensing position.	
3	The red level display is lit.	
4	Press the TEACH button for approximately 1 second with no object.	
5	Teaching is complete when the green level display is lit.The level display will display the digital incident level later.	0/10111111 (Green)
6	Set to RUN mode.	$\xrightarrow{\text { RUN }}$

Note: The order of "with-object" and "without-object" setting steps above can be reversed.

Pin-point Teaching (for Positioning)

Step	Operation	
1	Set the mode selector to SET.	SET
2	Press the TEACH button for approximately 1 second with no object.	
3	The red level display is lit.	
4	Place the object in the desired position, and press the TEACH button for at least 3 seconds.	
5	Teaching is complete when the green level display is lit. The level display will display the digital incident level later. (The red level display will flash if a teaching error occurs.)	
6	Set to RUN mode.	$\xrightarrow{\text { RUN }}$

Safety Precautions

Precautions for Correct Use

Do not use the product in atmospheres or environments that exceed product ratings.

Amplifiers

- Designing

Operation after Turning Power ON
The Sensor is ready to detect within 200 ms after the power supply is turned ON. If the Sensor and load are connected to separate power supplies, be sure to turn ON the Sensor first.

- Mounting

Joining and Separating Amplifiers

Joining Amplifiers

(1) Mount the Amplifiers one at a time onto the DIN track.

(2) Slide the Amplifiers together, line up the clips, and press the Amplifiers together until they click into place.

Separating Amplifiers

Slide Amplifiers away from each other, and remove from the DIN track one at a time. (Do not attempt to remove Amplifiers from the DIN track without separating them first.)

Note 1. The specifications for ambient temperature will vary according to the number of Amplifiers used together. For details, refer to Ratings and Specifications
2. Always turn OFF the power supply before joining or separating Amplifiers.

Fiber Connection and Disconnection

The E3X Amplifier uses a one-touch locking mechanism. (Only the E3X-NM uses a locking button mechanism.) Connect or disconnect the fibers to or from the E3X Amplifier using the following procedures:

1) Connection

Open the protective cover, insert the fibers according to the fiber insertion marks on the side of the Amplifier, and lower the lock button.

Note: To maintain the fiber properties, confirm that the lock is released before removing the fiber.
(3) Precautions for Fiber Connection/Disconnection

Be sure to lock or unlock the lock button within an ambient temperature range between -10 and $40^{\circ} \mathrm{C}$.

Mounting the Mobile Console Head
Leave a gap of at least 20 mm between the nearest Amplifier and the Mobile Console head.

Mounting the Mobile Console Head

With Twin-output models (E3X-DA $\square \square$ TW), up to 16 channels (i.e., eight E3X-DA $\square \square$ TW Amplifiers) can be set using the E3X-MC11 Mobile Console. (Operating modes and area detection, however, cannot be set.)

- Adjustment

Mutual Interference Protection Function
There may be some instability in the digital display values due to light from other sensors. If this occurs, decrease the sensitivity (i.e., increase the threshold) to perform stable detection.

EEPROM Writing Error

If the data is not written to the EEPROM correctly due to a power failure during teaching or static-electric noise, repeat the whole teaching procedure.

Optical Communications

Several Amplifiers can be slid together and used in groups.
Do not, however, slide the Amplifiers or attempt to remove any of the Amplifiers during operation.

Hysteresis Adjustment

The hysteresis setting can be adjusted using the Mobile Console. Do not, however, set the hysteresis to a value lower than the factory setting. Using a setting less than the factory setting may result in incorrect operation.

Amplifiers with Connectors
 - Mounting

Mounting Connectors

(1) Insert the Master or Slave Connector into the Amplifier until it clicks into place.

(2) Join Amplifiers together as required after all the Master and Slave Connectors have been inserted.
(3) Attach the stickers (provided as accessories) to the sides of Master and Slave Connectors that are not connected to other Connectors.

Note: Attach the stickers to the sides with grooves.

Removing Connectors

(1) Slide the slave Amplifier(s) for which the Connector is to be removed away from the rest of the group.
(2) After the Amplifier(s) has been separated, press down on the lever on the Connector and remove it. (Do not attempt to remove Connectors without separating them from other Amplifiers first.)

Mounting End Plate (PFP-M)

Depending on how it is mounted, an Amplifier may move during operation. In this case, use an End Plate. Before mounting an End Plate, remove the clip from the master Amplifier using a nipper or similar tool.

The clip can also be removed using the following mechanism, which is incorporated in the construction of the section underneath the clip.
(1) Insert the clip to be removed into the slit underneath the clip on another Amplifier.

(2) Remove the clip by rotating the Amplifier.

When using the E3X-DA-N with the Mobile Console, mount the End Plate in the way shown below.

Pull Strengths for Connectors (Including Cables) E3X-CN11, E3X-CN21, E3X-CN22: 30 N max. E3X-CN12: 12 N max.

Accessories

Operating Instructions Sticker E39-Y1

- Attach near the Sensor.
- 1 English and 1 Japanese sticker per set
- Material: Front side: Paper, Reverse side: Adhesive tape

Japanese Sticker

English Sticker

[^0]: 1. For details, refer to page 6.
 *2. Manufacturing of the E3X-DA \square TW Series was discontinued at the end of March 2012. Manufacture of the E3X-DA6/DA8/DA6D will be discontinued in March 2017.
[^1]: Note: Pin 2 is not used

