: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- 102X64 DOTS (RELATES TO 8x17 CHARACTER OR 4x12 LARGE CHARACTER)
- HIGH CONTRAST OLED DISPLAY
- INTEGRATED CONTROLLER SSD1306B
- SPI INTERFACE: MOSI, CLK, CS, D/C
- ${ }^{2} \mathrm{C}$ INTERFACE: SDA, SCL
- WIDE TEMPERATURE RANGE (Top $-40^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$)
- NO MOUNTING REQUIRED: JUST PUT INTO PCB
- 3 VERSIONS (WITH / W.O. POLARISOR AND PROTECTION GLASS) IN VARIOUS COLORS)
- FAST RESPONSE TIME, NO AFTERGLOW

ORDERING CODES

- GRAPHIC 102×64, yellow, black background, incl. protection glass
- GRAPHIC 102×64, yellow, black background, w./o. protection glass
- GRAPHIC 102x64, white, black background, w./o. protection glass

WITH A MINIMUM ORDER QTY. OF 10,000 PCS.

- GRAPHIC 128x64, with Polariser (Standard)

EA OLEDS102-6GGA

EA OLEDS102-6LGA
EA OLEDS102-6LWA

EA OLEDS102-6LXA
X: $\quad G=$ Yellow
$B=$ Blue
$R=$ Red

ACCESSORIES

- TEST BOARD WITH USB-INTERFACE
- SOCKET 4.8MM HOCH (2 PCS. ARE REQUIRED)
- TOUCHPANEL, 4-WIRE ANALOGUE SELF-ADHESIVE
- ZIFF CONNECTOR FOR TOUCH, BOTTOM CONTACT
*) ONLY IN COMBINATION WITH EA OLEDS102-6GGA.

EA 9781-1USB
EA FL-14P
EA TOUCH102-1*)
EA WF100-04S

EA OLED SERIES

With its EA OLED series ELECTRONIC ASSEMBLY launched worldwide the first display family with OLEDtechnology for direct mounting and soldering. In comparison to standard displays there's no FFC/FPC cable/connector that may lose contact, this OLED series will be soldered directly or put into a standard 2.54 mm precision socket.
It is designed for compact handheld equipment and provides a lot real advantages:

- Extreme compact with a large viewing area
- Super flat with 2.4 mm (without frontal protection glass)
- SPI and $\mathrm{I}^{2} \mathrm{C}$ interface
- Simple mounting with direct soldering
- Ex stock available from 1 pc. off
- Long life time ($80,000 \mathrm{~h}$ for yellow)
- Wide temperature range $\left(-40 . .+80^{\circ} \mathrm{C}\right)$
- Fast response time ($10 \mu \mathrm{~s}$), no afterglow

VERSIONS

The EA OLEDS102-6 is available in 3 different versions:

EA OLEDS102-6GGA / Allround

This module is perfect for rough environment. An additional frontal glass protects the display against scratch, shock and UV light. Thanks to its integrated polariser there's no need for an additionally smoked glass.
EA OLEDS 102-6LGA and -6LWA / Flat
This module is the standard module and does fit for the most applications. The flat design (2.4 mm) makes the display perfect for smallest equipment. The background is always deep black for best contrast.

COLORS (CUSTOM MADE)

The standard colors are yellow and white.
The flat version EA OLEDS102-6LGA is on customers request available in 3 more colors. The minimum order quantity is 10,000 pcs., lead time is about 20 weeks. Samples are available on request.
Interface and software are 100% compatible. The yellow color provides highest brightness and longest life time.

EA OLEDS102-6LEA

EA OLEDS102-6LRA

EA OLEDS102-6LBA

APPLICATION EXAMPLES

4 wire SPI, disabled charge pump

3 wire SPI, disabled charge pump

4 wire SPI single supply 3.3 V

3 wire SPI single supply 3.3V

$1^{2} C(0 \times 78)$, disabled charge pump

$I^{2} \mathrm{C}$ (0x78) single supply 3.3 V

POWER SUPPLY GENERATOR

Voltage converter 3.3V-12 V (FAN5331, LT1935)

DATA TRANSFER 4-WIRE SPI (8 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the D/C line. A busy check is not necessary at all. Clock rate may be up to 10 MHz . Data transmission is based on SPI mode 3, MSB first. For more
 details please refer to the controllers data sheet SSD1309.

DATA TRANSFER 4-WIRE SPI (9 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the first bit of the 9 bit data transfer. A busy check is not necessary at all. Clock rate
 may be up to 10 MHz . Data transmission is based on SPI mode 3, MSB first (9 bit). For more details please refer to the controllers data sheet SSD1309.

DATA TRANSFER I²C

The $I^{2} \mathrm{C}$ mode provides a bi-directional data transmission: That means that data can be written and read. With the pin SA0 the $I^{2} \mathrm{C}$ address can be changed (L: 0×78 or $0 \times 3 \mathrm{C}, \mathrm{H}: 0 \times 7 \mathrm{~A}$ or $0 \times 3 \mathrm{D}$). So up to 2 displays may be driven on 1 bus. The clock rate may be up to 400 KHz . Please make sure when defining the pull-up resistors that the internal resistance of the display is $600 . .1000 \Omega$. This affects the low level when reading data and ACK bit.
Attention: When reading data, after the command for page- or column address there need to be a dummy read (discard the first byte).

Control byte: C_{0} (Continuation bit) $=0 \rightarrow$ Display data do follow; $1 \rightarrow$ refer D/C bit

GRAPHIC RAM

The EA OLEDS102-6 comes with an integrated display RAM. Each byte represents 8 dots. For more details please refer to the controllers data sheet SSD1306B, available on our website at
http://www.Icd-module.de/fileadmin/eng/pdf/zubehoer/SSD1306B 1.1.pdf.

COMMAND TABLE (ABSTRACT)

This is a collection of the most important commands. The data sheet SSD1309

3.-. Column address	
${ }_{0}^{\text {\% }}$	Page 0
\%	Page 1
\%	Page 2
\%	Page 3
\%	Page 4
品	Page 5
号	Page 6
Do	Page 7

Command	$\begin{array}{\|l} \hline \mathrm{D} / \\ \mathrm{C} \\ \hline \end{array}$	Command Code									Description
		Hex	D7	D6	D5	D4	D3	D2	D1	D0	
Contrast Control	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & \hline 81 \\ & 7 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~A}_{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{6} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{5} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{4} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{2} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ \mathrm{~A}_{0} \end{array}$	Double byte command to select 1 out of 256 contrast steps. Contrast increases as the value increases.
$\begin{aligned} & \text { Display } \\ & \text { On / Off } \end{aligned}$	0	$\begin{array}{\|l\|} \hline \mathrm{AE} / \\ \mathrm{AF} \end{array}$	1	0	1	0	1	1	1	X 0	$\mathrm{X}_{0}=0$: Display OFF (sleep mode) (RESET) $X_{0}=1$: Display ON in normal mode
Set Column address	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \hline 21 \\ & 0 \\ & 7 F \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{7} \\ & \mathrm{~B}_{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{6} \\ & \mathrm{~B}_{6} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ A_{5} \\ B_{5} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{4} \\ & \mathrm{~B}_{4} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & A_{3} \\ & B_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \end{array}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ A_{0} \\ B_{0} \end{array}$	Setup column start and end address A[7:0] : Column start address, range: 0-127d, (RESET $=0$) $\mathrm{B}[7: 0]$: Column end address, range : 0-127d, RESET = 127) Note: This command is only for horizontal or vertical addressing mode.
Set Page address	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ 0 \\ 7 \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & X \\ & X \\ & X \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ x \\ x \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ x \\ x \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ X \\ X \\ X \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{2} \\ \mathrm{~B}_{2} \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~A}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ A_{0} \\ B_{0} \end{array}$	Setup page start and end address A[2:0] : Page start Address, range : 0-7d, (RESET = 0) $\mathrm{B}[2: 0]$: Page end Address, range : $0-7 \mathrm{~d}$, (RESET = 7) Note: This command is only for horizontal or vertical addressing mode.
Display Start Line	0	$\begin{array}{l\|} \hline 40 \\ - \\ 7 F \end{array}$	0	1	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	Set display RAM display start line register from 0-63 using $\mathrm{X}_{5} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$. Display start line register is reset to 0 during RESET.
Segment remap	0	$\begin{aligned} & \hline \mathrm{A} 0 / \\ & \mathrm{A} 1 \end{aligned}$	1	0	1	0	0	0	0	X 0	$\mathrm{X}_{0}=0$: column address 0 is mapped to SEGO (RESET) $X_{0}=1$: column address 127 is mapped to SEG0
Com output scan direction	0	$\begin{array}{\|l\|l\|} \hline \mathrm{C} 0 / \\ \mathrm{C} 8 \\ \hline \end{array}$	1	1	0	0	X_{3}	0	0	0	$X_{3}=0$: normal mode (RESET) Scan from COMO to COM[N -1] $X_{3}=1$: remapped mode. Scan from COM[$\mathrm{N}-1$] to COMO Where N is the Multiplex ratio
RAM Data	1	XX	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	$\mathrm{D}_{7}-\mathrm{D}_{0}$ is written to RAM .

INITIALISATION EXAMPLE

```
void init_OLEDS102(void)
{
        send_command(0x40);
        send_command(0xA0);
        send_command(0xC0);
        send_command(0\times2E);
        send_command(0x8D); send_command(0x10);
        send_command(0x20); send_command(0x02);
        send_command(0x81); send_command(0xFF);
        send_command(0xD5); send_command(0x40);
        send_command(0xD9); send_command(0xF1);
        send_command(0xAD); send_command(0x30);
        send_command(0x21); send_command(0x0D); send_command(0x72); //Set ColumnAddress
        send_command(0\times22); send_command(0x00); send_command(0x3F); //Set PageAddress
        send_command(0xAF); //Display on
}
```

```
    //Set Display start line
```

 //Set Display start line
 //Bottom View no Segment remap
 //Bottom View no Segment remap
 //Bottom View COM scan direction normal
 //Bottom View COM scan direction normal
 //StartColumnAddress
 //StartColumnAddress
 //Charge Pump Setting
 //Charge Pump Setting
 //Set Memory AddressMode
 //Set Memory AddressMode
 //Set Brightness
 //Set Brightness
 //Set Display Clock Divide
 //Set Display Clock Divide
 //Set Precharge Periode
 //Set Precharge Periode
 //Set Internal Ref
    ```
    //Set Internal Ref
```


ACCESSORY: SOCKET EA FL-14P

Using a 14-pin socket makes the display replaceable and adapts the height. Those socket may also be soldered automatically by wave soldering or reflow process. Each display requires 2 pcs.

ACCESSORY: TOUCHPANEL EA TOUCH102-1

As an accessory there is an analogue touchpanel available. It comes with a self-adhesive glue on its rear side. Connection is done via FFC, pitch 1.0 mm . Any standard ZIFF connector can be used (e.g. EA WF100-04S). Bending radius is minimum 5 mm . Interfacing to a processor can be either done by an external touch panel controller or with a controller that is featured with analogue input. The touch panel is similar to a potentiometer: connecting a voltage of e.g. 3.3 V to the pins Top-Bottom makes it possible to read out a voltage on pin Left or Right which is linear to the Y -coordinate of the pressed point. The X -coordinate will result when the voltage will be supplied to Left-Right and measurement is done at Top or Bottom. The pinout of the connecting cable is shown in the drawing. Only in combination with the EA OLEDS102-6GGA.

ACCESSORY: ZIFF CONNECTOR EA WF100-04S

The ZIFF connector matches perfect to the touch panel EA TOUCH128-1. It provides 4 pins with 1.0 mm pitch. Connection is bottom contact.
Top contact version is called EA WF100-04T.

SPECIFICATION

Unless otherwise specified, VSS $=0 \mathrm{~V}, V D D=1.8-3.3 V\left(T a=25^{\circ} \mathrm{C}\right)$

| Value | Condition | min | typ | max | Unit |
| :--- | :--- | :---: | :---: | :---: | :--- |
| Operating Temperature | | -40 | | +80 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | | -40 | | +80 | ${ }^{\circ} \mathrm{C}$ |
| Storage Humidity | $<40^{\circ} \mathrm{C}$ | | | 90 | $\% \mathrm{RH}$ |
| Operating Voltage VDD
 logic supply | | 1.8 | 3.0 | 3.3 | V |
| Operating Voltage VCC
 OLED supply | | | 12.5 | 13.0 | V |
| High Logic input level | | $0.8 \times$ VDD | | | |
| Low Logic input level | | | | $0.2 \times$ VDD | V |
| Power Supply VCC ${ }^{1)}$ | All Pixel off | | 0,5 | | mA |
| | Demo picture ${ }^{2)}$ | | 13 | | mA |
| | All Pixel on | | 32 | | mA |

${ }^{1)}$ VCC $=12 \mathrm{~V}$, initialization $0 \times 81,0 \times F F / 0 \times D 5,0 \times 40 / 0 \times D 9,0 \times 44 / 0 \times D B, 0 \times 20$
2) Demo Picture:

OPTICAL DATA

| Item | Symbol | Condition | min | typ | max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| View Angle | (V) θ | CR $\geqq 2000$ | 160 | 170 | | deg |
| | (H) φ | CR $\geqq 2000$ | 160 | 170 | | deg |
| Contrast Ratio | CR | Dark Room | 2000:1 | | | |
| Response Time | T rise | | | 10 | | $\mu \mathrm{s}$ |
| | T fall | | | 10 | | $\mu \mathrm{s}$ |
| Luminance ${ }^{1)}$ | L | -6GGA / -6LGA | 90 | 100 | | $\mathrm{cd} / \mathrm{m}^{2}$ |
| CIE $1931 \times$ (Yellow) | | Dark Room | 0.45 | 0.47 | 0.49 | |
| CIE 1931 y(Yellow) | | Dark Room | 0.48 | 0.50 | 0.52 | |
| Operating Life Time ${ }^{2}$ | | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ chess board 50\% | 50000 | | | hrs |

[^0]
DIMENSIONS EA OLEDS102-6

| Pin | Symbol | | Pin | Symbol | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D0 | SPI: SCLK, ${ }^{2} \mathrm{C}$: SCL | 15 | C2N | Charge pump capacitor 1uF/10V |
| 2 | D1 | SPI: MOSI, $I^{2} \mathrm{C}: \mathrm{SDA}_{\text {in }}$ | 16 | C2P | Charge pump capacitor |
| 3 | D2 | SPI: NC, $I^{2} \mathrm{C}$: SDA ${ }_{\text {out }}$ | 17 | C1P | Charge pump capacitor 1uF/10V |
| 4 | | | 18 | C1N | Charge pump capacitor |
| 5 | | | 19 | VBAT | Power supply for charge pump |
| 6 | | | 20 | VCC | OLED driving voltage |
| 7 | | | 21 | VCOMH | Common deselect level. (Internally regulated) |
| 8 | | | 22 | GND | Ground |
| 9 | | | 23 | VDD | Typ. 3.3 V logic power supply |
| 10 | | | 24 | BS0 | $00=4-$ Wire SPI; $01=3-$ Wire SPI |
| 11 | | | 25 | BS1 | $10=12 \mathrm{C}$ Interface |
| 12 | NC | | 26 | CS | Chip Select (active low) |
| 13 | NC | | 27 | RES | Reset (active low) |
| 14 | NC | | 28 | D/C | SPI (4-Wire): L=Command, H=Data, ${ }^{2} \mathrm{C}$: SA0 (Address) |

Note:

- OLED displays are generally not suited for wave or reflow soldering. Temperatures of over $80^{\circ} \mathrm{C}$ can cause lasting damage.
- The surfaces of the displays are protected from scratching by self-adhesive protective foil. Please remove before mounting

[^0]: ${ }^{1)} V D D=3.3 \mathrm{~V}$, incl. booster ${ }^{1)} V D D=3.3 \mathrm{~V}$, incl. booster FAN5331 with $V C C=12.5 \mathrm{~V}$
 ${ }^{2)}$ Operating life time is defined the amount of time until the luminance has decayed to 50% of the initial value.
 Screen saving mode is recommended to extend life time

