

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



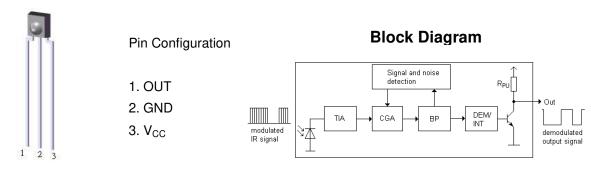
## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China








# **EVERLIGHT**AMERICAS

## **DATASHEET**

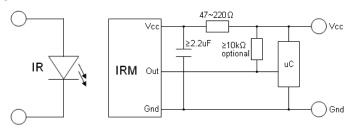
## Infrared Receiver Module EAIRMCA0



#### **Features**

- · High protection ability against EMI
- · Circular lens for improved reception characteristics
- · Available for various carrier frequencies
- · Min burst length: 8 cycles
- · Min gap length: 12 cycles
- · Low operating voltage and low power consumption
- · High immunity against ambient light
- · High immunity against TFT and PDP backlight
- · Long reception range
- · High sensitivity
- · Pb free and RoHS compliant
- · Compliance with EU REACH
- Compliance Halogen Free .(Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)

## **Description**


- The EAIRMCA0 devices are mini DIP type infrared receivers which have been developed and designed by using the latest IC technology.
- The PIN diode and preamplifier are assembled onto a lead frame and molded into a black epoxy
  package which operates as an IR filter. The demodulated output signal can directly be decoded by a
  microprocessor.

#### **Applications**

- · AV equipment such as TV, VCR, DVD, CD, MD, etc.
- CATV set top boxes
- Multi-media Equipment
- Other devices using IR remote control



## **Application Circuit**



The RC Filter must be connected as close as possible to Vcc and GND pins.

#### **Parts Table**

| Model No. | Carrier Frequency |  |  |
|-----------|-------------------|--|--|
| EAIRMCA0  | 38 kHz            |  |  |

## Absolute Maximum Ratings (T<sub>a</sub>=25°C)

| Parameter                | Symbol | Rating    | Unit                   |
|--------------------------|--------|-----------|------------------------|
| Supply Voltage           | Vcc    | 6         | V                      |
| Operating Temperature    | Topr   | -20 ~ +80 | $^{\circ}\!\mathbb{C}$ |
| Storage Temperature      | Tstg   | -40 ~ +85 | $^{\circ}\!\mathbb{C}$ |
| Soldering Temperature *1 | Tsol   | 260       | °C                     |

 $<sup>^{\</sup>star 1}$  4mm from mold body for less than 5 seconds

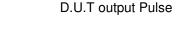


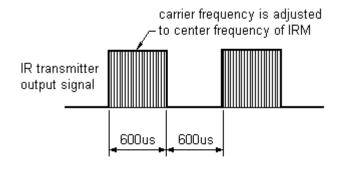
## Electro-Optical Characteristics (Ta=25°C, Vcc=3V)

| Parameter                 | Symbol            | MIN.    | TYP. | MAX. | Unit | Condition                          |
|---------------------------|-------------------|---------|------|------|------|------------------------------------|
| Current consumption       | lcc               |         | 0.4  | 0.6  | mA   | No input signal                    |
| Supply voltage            | $V_{CC}$          | 2.7     | -    | 5.5  | V    |                                    |
| Peak wavelength           | $\lambda_{p}$     |         | 940  |      | nm   |                                    |
| D P                       | L <sub>0</sub>    | 14      |      |      | - m  |                                    |
| Reception range           | L <sub>45</sub>   | 6       |      |      |      | See chapter                        |
| Half angle(horizontal)    | $\phi_{\text{h}}$ |         | ±50  |      | deg  | ,Test method'                      |
| Half angle(vertical)      | $\phi_{v}$        |         | ±50  |      | deg  |                                    |
| High level pulse width    | Тн                | 450     |      | 750  | μs   | Test signal  according to figure 1 |
| Low level pulse width     | $T_L$             | 450     |      | 750  | μs   |                                    |
| High level output voltage | $V_{OH}$          | Vcc-0.4 |      |      | V    |                                    |
| Low level output voltage  | $V_{OL}$          |         | 0.2  | 0.5  | V    | I <sub>SINK</sub> ≦2mA             |
| Internal pull up resistor | $R_{PU}$          | 85      | 100  | 115  | kΩ   |                                    |



#### **Test method**


The specified electro-optical characteristics are valid under the following conditions.


- 1. Measurement environment
  - A place without extreme light reflections.
- 2. External light

The environment contains an ordinary, white fluorescent lamp without high frequency modulation. The color temperature is 2856K and the illumination at the IR receiver is less than 10 Lux ( $Ev \le 10Lux$ ).

- 3. Standard transmitter
  - The test transmitter is calibrated by using the circuit shown in figure 2. The radiation intensity of the transmitter is adjusted until **Vo=400mVp-p.** Both, the test transmitter and the photo diode, have a peak wavelength of 940nm. The photo diode for calibration is PD438B (λp=940nm, Vr=5V).
- 4. The measurement system is shown in Fig.-3

Fig.-1 Transmitter Wave Form





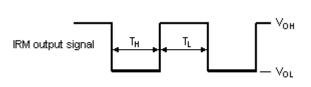
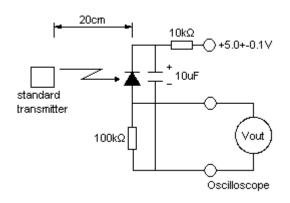
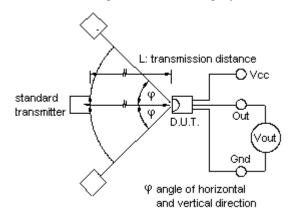
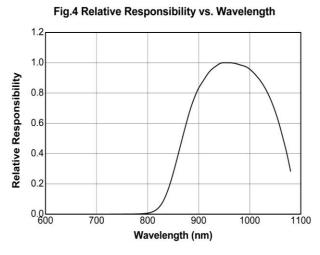
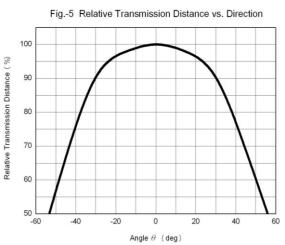
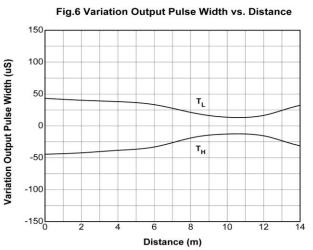



Fig.-2 standard transmitter calibration



Fig.-3 Measuring System






## **Typical Electro-Optical Characteristic Curves**







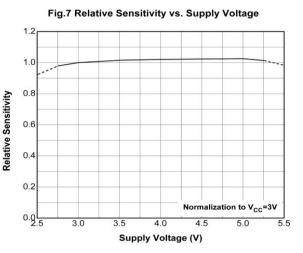



Fig.8 Relative Sensitivity vs. Carrier Frequency

1.2

1.0

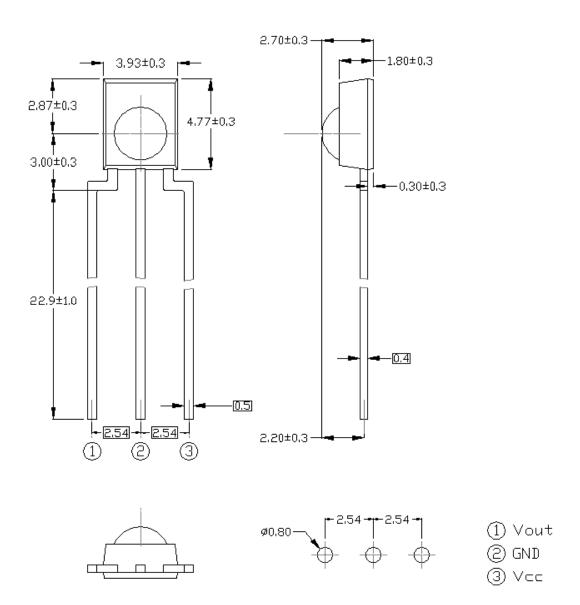
36kHz

0.8

0.4

0.2

0.2


0.2

Carrier Frequency (kHz)

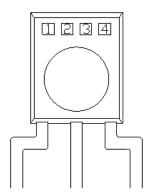


## **Package Dimensions**

(Dimensions in mm)



## Notes:


Tolerances unless mentioned ±0.3mm. Unit: mm



#### **Code information**

| Protocol   | Suitable | Protocol        | Suitable |
|------------|----------|-----------------|----------|
| JVC        | Yes      | RCA             | No       |
| Matsushita | Yes      | Sharp           | Yes      |
| Mitsubishi | No       | Sony 12 Bit     | Yes      |
| NEC        | Yes      | Sony 15 Bit     | No       |
| RC5        | Yes      | Sony 20 Bit     | No       |
| RC6        | Yes      | Toshiba         | Yes      |
| RCMM       | No       | XMP-1           | Yes      |
| RCS-80     | No       | Continuous Code | No       |

## **Device Marking**



#### Notes

- 1 denotes Year code
- 2 denotes Month code
- 3 denotes Device number
- 4 denotes Carrier frequency

## **Packing Quantity**

1500 pcs / Box

10 Boxes / Carton



#### **DISCLAIMER**

- 1. Above specification may be changed without notice. Everlight Americas will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. Everlight Americas assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.