imall

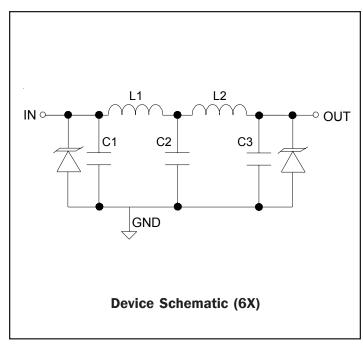
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


PROTECTION PRODUCTS - EMIClamp™ Description

The EClamp[™]2396P is a (L-C) low pass filter array with integrated TVS diodes. It is designed to suppress unwanted EMI/RFI signals and provide electrostatic discharge (ESD) protection in portable electronic equipment. This state-of-the-art device utilizes solid-state silicon-avalanche technology for superior clamping performance and DC electrical characteristics. They have been optimized for **protection of color LCD and camera lines** in cellular phones and other portable electronics.

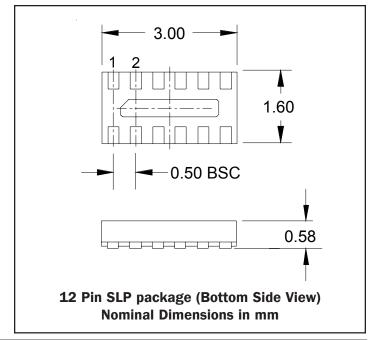
The device consists of six identical circuits comprised of TVS diodes for ESD protection, and a 5-pole inductor - capacitor network for EMI/RFI filtering. A typical inductor value of 19nH and a capacitor value of 12pF are used to achieve 30dB minimum attenuation from 800MHz to 2.7GHz. The TVS diodes provide effective suppression of ESD voltages in excess of \pm 15kV (air discharge) and \pm 8kV (contact discharge) per IEC 61000-4-2, level 4.

The EClamp2396P is in a 12-pin, RoHS/WEEE compliant, SLP3016P12 package. It measures $3.0 \times 1.6 \times 0.58$ mm. The leads are spaced at a pitch of 0.5mm and are finished with lead-free NiPd. The small package makes it ideal for use in portable electronics such as cell phones, digital still cameras, and PDAs.

Circuit Diagram (Each Line)

Features

- Bidirectional EMI/RFI filter with integrated TVS for ESD protection
- ESD protection to IEC 61000-4-2 (ESD) Level 4, ±15kV (air), ±8kV (contact)
- Filter performance: 30dB minimum attenuation 800MHz to 2.7GHz
- ◆ TVS working voltage: 5V
- Inductor: 19nH (Typical)
- Capacitance: 12pF (Typical at VR = 2.5V)
- Protection and filtering for six lines
- Solid-state technology


Mechanical Characteristics

- SLP3016P12 12-pin package
- RoHS/WEEE Compliant
- Nominal Dimensions: 3.0 x 1.6 x 0.58 mm
- Lead Pitch: 0.5mm
- Lead finish: NiPd
- Marking: Marking Code
- Packaging: Tape and Reel per EIA 481

Applications

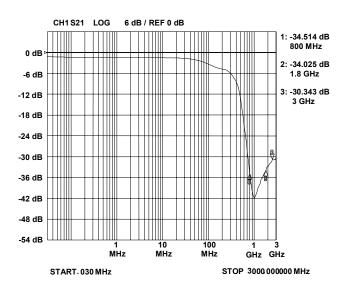
- Color LCD Protection
- Cell Phone CCD Camera Lines
- Clamshell Cell Phones

Package Configuration

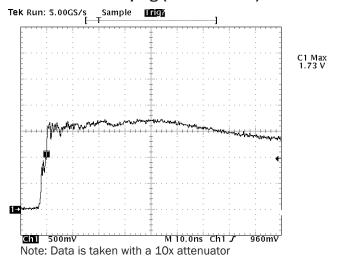
EClamp2396P

Maximum Ratings

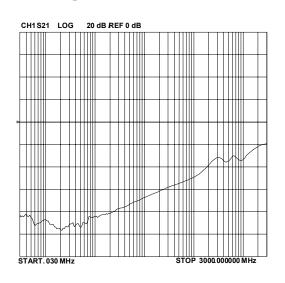
Rating	Symbol	Value	Units
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	+/- 20 +/- 15	kV
Junction Temperature	T,	125	°C
Operating Temperature	T _{op}	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C


Electrical Characteristics (T=25°C)

					_	
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
TVS Reverse Stand-Off Voltage	V _{RWM}				5	V
TVS Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	6	8	10	V
TVS Reverse Leakage Current	I _R	V _{RWM} = 3.3V			0.1	μA
DC Resistance	R _{DC}			18		Ohms
Filter Cut-Off Frequency	fc	$Z_{Source} = Z_{Load} = 50 \text{ Ohms}$		150		MHz
Inductance	L			19		nH
Total Series Inductance	L ₁ + L ₂	Each Line		38		nH
Capacitance C_1 , C_2 , C_3		V _R = 2.5V, f = 1MHz	10	12	15	pF
Total Capacitance	$C_{1} + C_{2} + C_{3}$	Input to Gnd, Each Line V _R = 2.5V, f = 1MHz	30	36	45	рF


EClamp2396P


Typical Insertion Loss S21 (Each Line)


ESD Clamping (+8kV Contact)

Capacitance vs. Reverse Voltage (Normalized to 2.5 volts)

Analog Crosstalk (Each Line)

ESD Clamping (-8kV Contact)

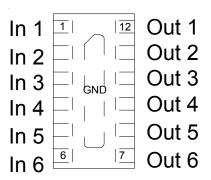
Note: Data is taken with a 10x attenuator

Device Connection

The EClamp2396P is comprised of six identical circuits each consisting of a low pass filter for EMI/RFI suppression and dual TVS diodes for ESD protection. The device is in a 12-pin SLP package. Electrical connection is made to the 12 pins located at the bottom of the device. A center tab serves as the ground connection. The device has a flow through design for easy layout. Pin connections are noted in Figure 1. All path lengths should be kept as short as possible to minimize the effects of parasitic inductance in the board traces. Recommendations for the ground connection are given below.

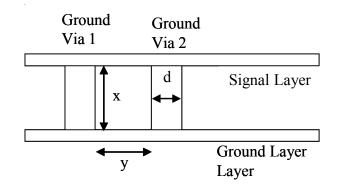
Ground Connection Recommendation

Parasitic inductance present in the board layout will affect the filtering performance of the device. As frequency increases, the effect of the inductance becomes more dominant. This effect is given by Equation 1.


Equation 1: The Impedance of an Inductor at Frequency XLF

 $XLF(L, f) = 2 * \pi * f * L$

Where: L= Inductance (H) f = Frequency (Hz)

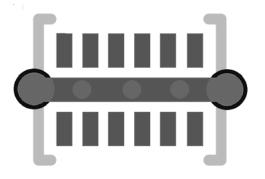

Via connections to the ground plane form rectangular wire loops or ground loop inductance as shown in Figure 2. Ground loop inductance can be reduced by using multiple vias to make the connection to the ground plane. Bringing the ground plane closer to the signal layer (preferably the next layer) also reduces ground loop inductance. Multiple vias in the device ground pad will result in a lower inductive ground loop over two exterior vias. Vias with a diameter d are separated by a distance y run between layers separated by a distance x. The inductance of the loop path is given by Equation 2. Thus, decreasing distance x and y will reduce the loop inductance and result in better high frequency filter characteristics.

Pin	Identification			
1-6	Input Lines			
7 - 12	Output Lines			
Center Tab	Ground			

Equation 2: Inductance of Rectangular Wire Loop

LRECT(d, x, y) = 10.16 * 10⁻⁹ *
$$\left[x * \ln\left[\frac{2*y}{d}\right] + y * \ln\left[\frac{2*x}{d}\right]\right]$$

Where:


- d = Diameter of the wire (in)
- x = Length of wire loop (in)
- y = Breath of wire loop (in)

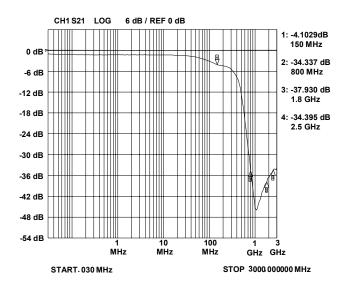
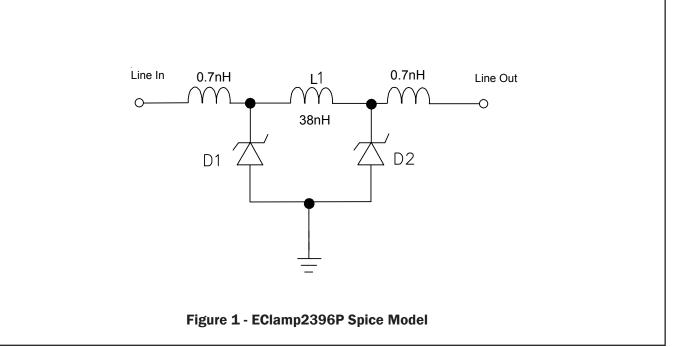

Applications Information

Figure 3 shows the recommended device layout. The ground pad vias have a diameter of 0.008 inches (0.20 mm) while the two external vias have a diameter of 0.010 inches (0.250mm). The internal vias are spaced approximately evenly from the center of the pad. The designer may choose to use more vias with a smaller diameter (such as 0.005 inches or 0.125mm) since changing the diameter of the via will result in little change in inductance (i.e. the log function in Equation 2 in highly insensitive to parameter d) . Figure 4 shows a typical insertion loss (S21) plot for the device using Semtech's filter evaluation board with 50 Ohm traces and the recommended via configuration.

Figure 3 - Recommended Layout Using Ground Vias


Figure 4 - Filter Characteristics Using Recommended Layout with Internal Vias

Applications Information - Spice Model

EClamp2396P Spice Model & Parameters

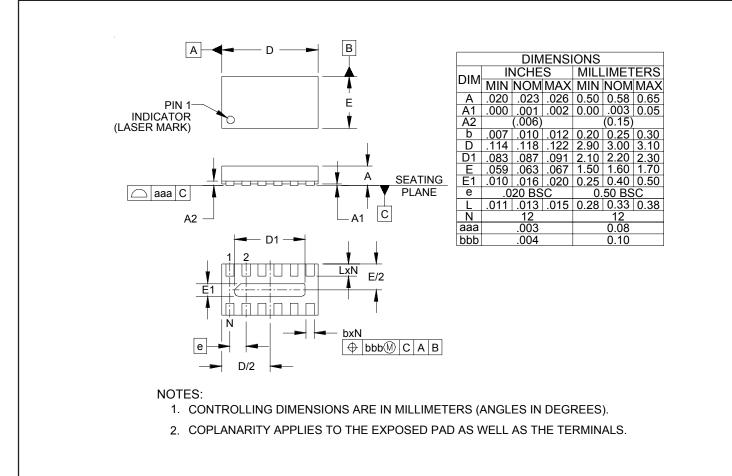
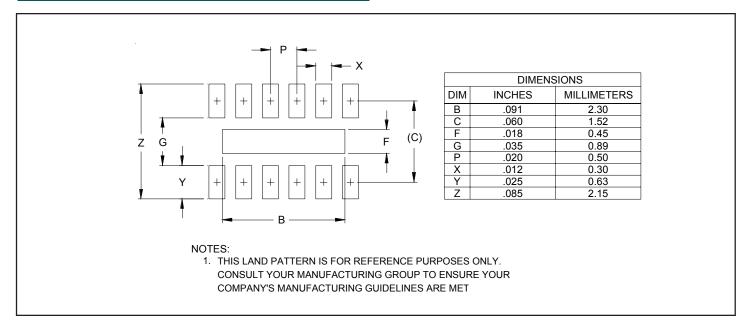


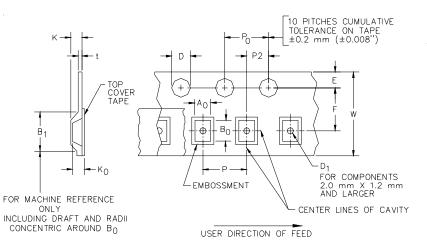
Table 1 - EClamp2396P Spice Parameters							
Parameter	Unit	D1 (TVS)	D2 (TVS)				
IS	Amp	4.09E-15	4.09E-15				
BV	Volt	7.435	7.435				
VJ	Volt	0.743	0.743				
RS	Ohm	0.584	0.584				
IBV	Amp	1E-3	1E-3				
CIO	Farad	31.3E-12	31.3E-12				
TT	sec	2.541E-9	2.541E-9				
М		0.23	0.23				
N		1.1	1.1				
EG	eV	1.11	1.11				



Outline Drawing - SLP3016P12

Land Pattern - SLP3016P12

Marking


PIN 1 INDICATOR (LASER MARK)

Ordering Information

Part Number	Qty per Reel	Reel Size		
EClamp2396P.TCT	3000	7 Inch		

EMIClamp and EClamp are marks of Semtech Corporation

Tape and Reel Specification

Pin 1 Location

User Direction of feed

Device Orientation in Tape

AO	В0	ко		
1.78 +/-0.05 mm	3.18 +/-0.05 mm	0.76 +/-0.05 mm		

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	w
8 mm	4.2 mm (.165)	1.5 + 0.1 mm - 0.0 mm (0.59 +.005 000)	0.8 mm ±0.05 (.031)	1.750±.10 mm (.069±.004)	3.5±0.05 mm (.138±.002)	2.4 mm (.094)	4.0±0.1 mm (.157±.00- 4)	4.0±0.1 mm (.157±.00- 4)	2.0±0.05m- m (.079±.002)	0.4 mm (.016)	8.0 mm + 0.3 mm - 0.1 mm (.312±.012)

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804