mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Embedded LPDDR3 SDRAM

EDF8164A3PK, EDFA164A2PK

Features

- Ultra-low-voltage core and I/O power supplies
- Frequency range
 - 800/933 MHz (data rate: 1600/1866 Mb/s/pin)
- 8*n* prefetch DDR architecture
- 8 internal banks for concurrent operation
- Multiplexed, double data rate, command/address inputs; commands entered on each CK_t/CK_c edge
- Bidirectional/differential data strobe per byte of data (DQS_t/DQS_c)
- Programmable READ and WRITE latencies (RL/WL)
- Burst length: 8
- Per-bank refresh for concurrent operation
- Auto temperature-compensated self refresh (ATCSR) by built-in temperature sensor
- Partial-array self refresh (PASR)
- Deep power-down mode (DPD)
- Selectable output drive strength (DS)

Table 1: Configuration Addressing

- Clock-stop capability
- Lead-free (RoHS-compliant) and halogen-free packaging

Options

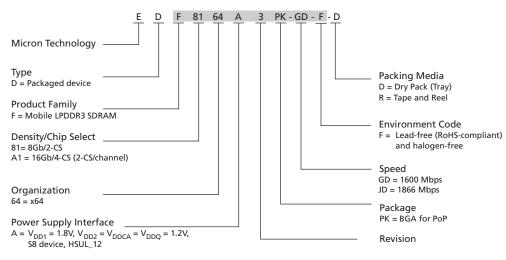
- V_{DD1}/V_{DD2}/V_{DDCA}/V_{DDO}: 1.8V/1.2V/1.2V/1.2V
- Array configuration
 - 128 Meg x 64 (DDP)
 - 256 Meg x 64 (QDP)
- Packaging
 - 12mm x 12mm, 216-ball PoP FBGA package
- Operating temperature range
 - From –30°C to +85°C

Architecture	128 Meg x 64	256 Meg x 64
Density per package	8Gb	16Gb
Die per package	2	4
Ranks (CS_n) per channel	1	2
Die per channel	1	2
Configuration	16 Meg x 32 x 8 banks x 2 channel	16 Meg x 32 x 8 banks x 2 rank x 2 channel
Row addressing	16K A[13:0]	16K A[13:0]
Column addressing (same for each die)	1K A[9:0]	1K A[9:0]

PDF: embedded_lpddr3_2e0f_20151022 216b_12x12_2ch_8-16gb_2e0f_embedded-lpddr3.pdf - Rev. A 10/15 EN

*Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Micron without notice. Products are only warranted by Micron to meet Micron's production data sheet specifications.

1


Table 2: Key Timing Parameters

Speed Grade	Clock Rate (MHz)	Data Rate (Mb/s/pin)	WRITE Latency (Set A/B)	READ Latency
GD	800	1600	6/9	12
JD	933	1866	8/11	14

Table 3: Part Number Description

Part Number	Total Density	Configuration	Ranks	Channels	Package Size	Ball Pitch
EDF8164A3PK-GD-F-D EDF8164A3PK-GD-F-R EDF8164A3PK-JD-F-D EDF8164A3PK-JD-F-R	8Gb	128 Meg x 64	1	2	12mm x 12mm (0.70mm MAX height)	0.40mm
EDFA164A2PK-GD-F-D EDFA164A2PK-GD-F-R EDFA164A2PK-JD-F-D EDFA164A2PK-JD-F-R	16Gb	256 Meg x 64	2	2	12mm x 12mm (0.80mm MAX height)	0.40mm

Figure 1: Marketing Part Number Chart

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3_SDRAM **Features**

Contents

Ball Assignments	
Ball Descriptions	12
Package Block Diagrams	14
Package Dimensions	16
MR0, MR5–MR8 Readout	18
I _{DD} Specifications – Dual Die, Dual Channel	19
I _{DD} Specifications – Quad Die, Dual Channel	22
Pin Capacitance	26
LPDDR3 Array Configuration	27
General Notes	. 27
Functional Description	28
Simplified Bus Interface State Diagram	30
Power-Up and Initialization	. 32
Voltage Ramp and Device Initialization	
Initialization After Reset (Without Voltage Ramp)	34
Power-Off Sequence	35
Uncontrolled Power-Off Sequence	. 35
Standard Mode Register Definition	
Mode Register Assignments and Definitions	. 36
Commands and Timing	46
ACTIVATE Command	47
8-Bank Device Operation	47
Read and Write Access Modes	48
Burst READ Command	49
^t DQSCK Delta Timing	51
Burst WRITE Command	55
Write Data Mask	. 59
PRECHARGE Command	60
Burst READ Operation Followed by PRECHARGE	61
Burst WRITE Followed by PRECHARGE	62
Auto Precharge	63
Burst READ with Auto Precharge	63
Burst WRITE with Auto Precharge	
REFRESH Command	66
REFRESH Requirements	69
SELF REFRESH Operation	71
Partial-Array Self Refresh (PASR) – Bank Masking	72
Partial-Array Self Refresh – Segment Masking	72
MODE REGISTER READ	
MRR Following Idle Power-Down State	
Temperature Sensor	76
DQ Calibration	
MODE REGISTER WRITE	. 79
MRW RESET Command	. 79
MRW ZQ Calibration Commands	. 80
ZQ External Resistor Value, Tolerance, and Capacitive Loading	
MRW – CA Training Mode	
MRW - Write Leveling Mode	
On-Die Termination (ODT)	
ODT Mode Register	87

Solution 8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM **Features**

Agreebron oue ODT	07
Asychronous ODT ODT During READ Operations (READ or MRR)	
ODT During Power-Down	
ODT During Self Refresh	
ODT During Deep Power-Down	
ODT During CA Training and Write Leveling	
Power-Down	
Deep Power-Down	
Input Clock Frequency Changes and Stop Events	
Input Clock Frequency Changes and Clock Stop with CKE LOW	. 98
Input Clock Frequency Changes and Clock Stop with CKE HIGH	. 99
NO OPERATION Command	
Truth Tables	
Absolute Maximum Ratings	
Electrical Specifications – I _{DD} Measurements and Conditions	
I _{DD} Specifications	
AC and DC Operating Conditions	
AC and DC Logic Input Measurement Levels for Single-Ended Signals	
V _{REF} Tolerances	. 114
Input Signal	
AC and DC Logic Input Measurement Levels for Differential Signals	
Single-Ended Requirements for Differential Signals	118
Differential Input Crosspoint Voltage	. 119
Input Slew Rate	. 120
Output Characteristics and Operating Conditions	. 122
Single-Ended Output Slew Rate	. 122
Differential Output Slew Rate	. 124
HSUL_12 Driver Output Timing Reference Load	. 126
Output Driver Impedance	
Output Driver Impedance Characteristics with ZQ Calibration	. 128
Output Driver Temperature and Voltage Sensitivity	. 128
Output Impedance Characteristics Without ZQ Calibration	
ODT Levels and I-V Characteristics	. 133
Clock Specification	
^t CK(abs), ^t CH(abs), and ^t CL(abs)	. 135
Clock Period Jitter	
Clock Period Jitter Effects on Core Timing Parameters	
Cycle Time Derating for Core Timing Parameters	
Clock Cycle Derating for Core Timing Parameters	
Clock Jitter Effects on Command/Address Timing Parameters	
Clock Jitter Effects on Read Timing Parameters	
Clock Jitter Effects on Write Timing Parameters	
Refresh Requirements	
AC Timing	
CA and CS_n Setup, Hold, and Derating	
Data Setup, Hold, and Slew Rate Derating	
Revision History	
Rev. A – 10/15	

List of Figures

Figure 1:	Marketing Part Number Chart	. 2
Figure 2:	216-Ball FBGA – 2 x 4Gb Die	10
Figure 3:	216-Ball FBGA – 4 x 4Gb Die	11
Figure 4:	Dual-Die, Dual-Channel Package Block Diagram	14
Figure 5:	Quad-Die, Dual-Channel Package Block Diagram	15
	216-Ball FBGA (12mm x 12mm) – EDF8164A3PK	
Figure 7: 2	216-Ball FBGA (12mm x 12mm) – EDFA164A2PK	17
	Functional Block Diagram	
	Simplified State Diagram	
	Voltage Ramp and Initialization Sequence	
	Command and Input Setup and Hold	
	CKE Input Setup and Hold	
	ACTIVATE Command	
	^t FAW Timing	
	READ Output Timing	
	Burst READ – $RL = 12$, $BL = 8$, ^t DQSCK > ^t CK	
Figure 17:	Burst READ - RL = 12, BL = 8, tDQSCK < tCK	50
	Burst READ Followed by Burst WRITE – $RL = 12$, $WL = 6$, $BL = 8$	
	Seamless Burst READ – RL = 6, BL = 8, $^{t}CCD = 4$	
	^t DQSCKDL Timing	
0	^t DQSCKDM Timing	
	^t DQSCKDS Timing	
	Data Input (WRITE) Timing	
Figure 24:	Burst WRITE	56
	Method for Calculating ^t WPRE Transitions and Endpoints	
	Method for Calculating ^t WPST Transitions and Endpoints	
	Burst WRITE Followed by Burst READ	
	Seamless Burst WRITE – $WL = 4$, $BL = 8$, ^t CCD = 4	
	Data Mask Timing	
	Write Data Mask – Second Data Bit Masked	
	Burst READ Followed by PRECHARGE – BL = 8, $RU(^{t}RTP(MIN)/^{t}CK) = 2$	
	Burst WRITE Followed by PRECHARGE – $BL = 8$	
	LPDDR3 – Burst READ with Auto Precharge	
	Burst WRITE with Auto Precharge – $BL = 8$	
	REFRESH Command Timing	
	Postponing REFRESH Commands	
	Pulling In REFRESH Commands	
	All-Bank REFRESH Operation	
	Per-Bank REFRESH Operation	
-	SELF REFRESH Operation	
	MRR Timing	
Figure 42:	READ to MRR Timing	75
	Burst WRITE Followed by MRR	
	MRR After Idle Power-Down Exit	
	Temperature Sensor Timing	
	MR32 and MR40 DQ Calibration Timing	
Figure 47:	MODE REGISTER WRITE Timing	79
0	MODE REGISTER WRITE Timing for MRW RESET	
	ZQ Timings	
Figure 50:	CA Training Timing	83

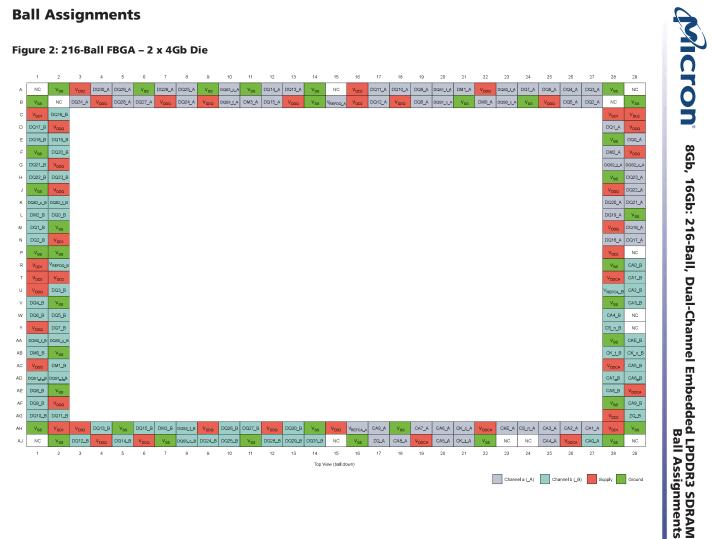
Solution 8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM **Features**

 Figure 51: Write-Leveling Timing Figure 52: Functional Representation of On-Die Termination Figure 53: Asynchronous ODT Timing – RL = 12 Figure 54: Automatic ODT Timing During READ Operation – RL = m Figure 55: ODT Timing During Power-Down, Self Refresh, Deep Power-Down Entry/Exit Figure 56: Power-Down Entry and Exit Timing Figure 57: CKE Intensive Environment Figure 58: REFRESH to REFRESH Timing in CKE Intensive Environments 	87 89 90 90 90 90
 Figure 53: Asynchronous ODT Timing – RL = 12 Figure 54: Automatic ODT Timing During READ Operation – RL = m Figure 55: ODT Timing During Power-Down, Self Refresh, Deep Power-Down Entry/Exit Figure 56: Power-Down Entry and Exit Timing Figure 57: CKE Intensive Environment 	89 90 90 92
 Figure 54: Automatic ODT Timing During READ Operation – RL = m Figure 55: ODT Timing During Power-Down, Self Refresh, Deep Power-Down Entry/Exit Figure 56: Power-Down Entry and Exit Timing Figure 57: CKE Intensive Environment 	90 90 92
Figure 55:ODT Timing During Power-Down, Self Refresh, Deep Power-Down Entry/ExitFigure 56:Power-Down Entry and Exit TimingFigure 57:CKE Intensive Environment	90 92
Figure 56: Power-Down Entry and Exit Timing Figure 57: CKE Intensive Environment	92
Figure 57: CKE Intensive Environment	92
Figure 58: REFRESH to REFRESH Timing in CKE Intensive Environments	
	93
Figure 59: READ to Power-Down Entry	
Figure 60: READ with Auto Precharge to Power-Down Entry	
Figure 61: WRITE to Power-Down Entry	
Figure 62: WRITE with Auto Precharge to Power-Down Entry	
Figure 63: REFRESH Command to Power-Down Entry	
Figure 64: ACTIVATE Command to Power-Down Entry	
Figure 65: PRECHARGE Command to Power-Down Entry	
Figure 66: MRR Power-Down Entry	
Figure 67: MRW Command to Power-Down Entry	
Figure 68: Deep Power-Down Entry and Exit Timing	
Figure 69: V_{REF} DC Tolerance and V_{REF} AC Noise Limits	114
Figure 70: LPDDR3-1600 to LPDDR3-1333 Input Signal	
Figure 71: LPDDR3-2133 to LPDDR3-1866 Input Signal	116
Figure 72: Differential AC Swing Time and ^t DVAC	117
Figure 73: Single-Ended Requirements for Differential Signals	
Figure 74: V _{IX} Definition	120
Figure 75: Differential Input Slew Rate Definition for CK and DQS	
Figure 76: Single-Ended Output Slew Rate Definition	123
Figure 77: Differential Output Slew Rate Definition	124
Figure 78: Overshoot and Undershoot Definition	
Figure 79: HSUL_12 Driver Output Reference Load for Timing and Slew Rate	
Figure 80: Output Driver	
Figure 81: Output Impedance = 240Ω, I-V Curves After ZQRESET	131
Figure 82: Output Impedance = 240Ω, I-V Curves After Calibration	132
Figure 83: ODT Functional Block Diagram	
Figure 84: Typical Slew Rate and ^t VAC – ^t IS for CA and CS_n Relative to Clock	149
Figure 85: Typical Slew Rate – ^t IH for CA and CS_n Relative to Clock	150
Figure 86: Tangent Line – ^t IS for CA and CS_n Relative to Clock	151
Figure 87: Tangent Line – ^t IH for CA and CS_n Relative to Clock	
Figure 88: Typical Slew Rate and ^t VAC – ^t DS for DQ Relative to Strobe	
Figure 89: Typical Slew Rate – ^t DH for DQ Relative to Strobe	
Figure 90: Tangent Line – ^t DS for DQ with Respect to Strobe	
Figure 91: Tangent Line – ^t DH for DQ with Respect to Strobe	

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3_SDRAM **Features**

List of Tables

	nfiguration Addressing	
Table 2: Key	Timing Parameters	. 2
	t Number Description	
Table 4: Ball	/Pad Descriptions	12
Table 5: Mod	de Register Contents	18
Table 6: I _{DD}	Specifications	19
Table 7: IDD6	⁶ Partial-Array Self Refresh Current at 45°C	21
	6 Partial-Array Self Refresh Current at 85°C	
Table 9: I _{DD}	Specifications	22
Table 10: IDT	D6 Partial-Array Self Refresh Current at 45°C	24
Table 11: IDT	D6 Partial-Array Self Refresh Current at 85°C	25
Table 12: Int	put/Output Capacitance	26
	Itage Ramp Conditions	
	itialization Timing Parameters	
	wer Supply Conditions	
	wer-Off Timing	
	ode Register Assignments	
	R0 Device Feature 0 ($MA[7:0] = 00h$)	
	R0 Op-Code BIt Definitions	
	R1 Device Feature 1 (MA[7:0] = $01h$)	
	R1 Op-Code Bit Definitions	
	Irst Sequence	
	R2 Device Feature 2 (MA[7:0] = $02h$)	
Table 24: MI	R2 Op-Code Bit Definitions	30
	DDR3 READ and WRITE Latency	
	R3 I/O Configuration 1 (MA[7:0] = $03h$)	
Table 27: MI	R3 Op-Code Bit Definitions	40
	R4 Device Temperature (MA[7:0] = 04h)	
Table 20. MI	R4 Op-Code Bit Definitions	40
	R5 Basic Configuration 1 (MA[7:0] = 05h)	
Table 21. MI	R5 Op-Code Bit Definitions	41
Table 32: MI	R6 Basic Configuration 2 (MA[7:0] = 06h) R6 Op-Code Bit Definitions	41
Table 34: MI	R7 Basic Configuration 3 (MA[7:0] = 07h) R7 Op-Code Bit Definitions	41
	R8 Basic Configuration 4 (MA[7:0] = 08h)	
	R8 Op-Code Bit Definitions	
	R9 Test Mode ($MA[7:0] = 09h$)	
	R10 Calibration (MA[7:0] = 0Ah)	
	R10 Op-Code Bit Definitions	
	R11 ODT Control (MA[7:0] = 0Bh)	
	R11 Op-Code Bit Definitions	
	R16 PASR Bank Mask (MA[7:0] = 010h)	
	R16 Op-Code Bit Definitions	
	R17 PASR Segment Mask (MA[7:0] = 011h)	
	R17 PASR Segment Mask Definitions	
	R17 PASR Row Address Ranges in Masked Segments	
	$R63 \text{ RESET } (MA[7:0] = 3Fh) - MRW \text{ Only } \dots$	
	served Mode Registers	
Table 50: Bar	nk Selection for PRECHARGE by Address Bits	60


Solution 8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM **Features**

	PRECHARGE and Auto Precharge Clarification	
Table 52:	REFRESH Command Scheduling Separation Requirements	
Table 53:	Bank- and Segment-Masking Example	
	Temperature Sensor Definitions and Operating Conditions	
Table 55:	Data Calibration Pattern Description	
	Truth Table for MRR and MRW	
Table 57:	CA Training Mode Enable (MR41 (29H, 0010 1001b), OP = A4H (1010 0100b))	
Table 58:	CA Training Mode Disable (MR42 (2AH, 0010 1010b), OP = A8H(1010 1000b))	
	CA to DQ Mapping (CA Training Mode Enabled with MR41)	
Table 60:	CA Training Mode Enable (MR48 (30H, 0011 0000b), OP = C0H (1100 0000b))	
	CA to DQ Mapping (CA Training Mode Enabled with MR48)	
	DRAM Termination Function in Write-Leveling Mode	
Table 63:	ODT States Truth Table	
	Command Truth Table	
	CKE Truth Table	
	Current State Bank <i>n</i> to Command to Bank <i>n</i> Truth Table	
	Current State Bank <i>n</i> to Command to Bank <i>m</i> Truth Table	
	DM Truth Table	
	Absolute Maximum DC Ratings	
	Switching for CA Input Signals	
Table 71.	Switching for I_{DD4R}	100 108
Table 71.	Switching for I_{DD4W}	100 100 100
	I_{DD} Specification Parameters and Operating Conditions	
	Recommended DC Operating Conditions	
Table 74.	Input Leakage Current	
Table 75:	Input Leakage Current	
	Operating Temperature Range	
	Single-Ended AC and DC Input Levels for CA and CS_n Inputs	
Table 78:	Single-Ended AC and DC Input Levels for CKE	
Table 79:	Single-Ended AC and DC Input Levels for DQ and DM	
	Differential AC and DC Input Levels	
Table 81:	CK and DQS Time Requirements Before Ringback (^t DVAC)	
	Single-Ended Levels for CK and DQS	
Table 83:	Crosspoint Voltage for Differential Input Signals (CK, CK_c, DQS_t, DQS_c)	
	Differential Input Slew Rate Definition	
	Single-Ended AC and DC Output Levels	
	Differential AC and DC Output Levels	
	Single-Ended Output Slew Rate Definition	
	Single-Ended Output Slew Rate	
Table 89:	Differential Output Slew Rate Definition	
Table 90:	Differential Output Slew Rate	
	AC Overshoot/Undershoot Specification	
	Output Driver DC Electrical Characteristics with ZQ Calibration	
	Output Driver Sensitivity Definition	
Table 94:	Output Driver Temperature and Voltage Sensitivity	
Table 95:	Output Driver DC Electrical Characteristics Without ZQ Calibration	
	I-V Curves	
Table 97:	ODT DC Electrical Characteristics ($R_{ZQ} = 240\Omega$ After Proper ZQ Calibration)	
Table 98:	Definitions and Calculations	
	^t CK(abs), ^t CH(abs), and ^t CL(abs) Definitions	
	Refresh Requirement Parameters (Per Density)	
	AC Timing	
	CA Setup and Hold Base Values	

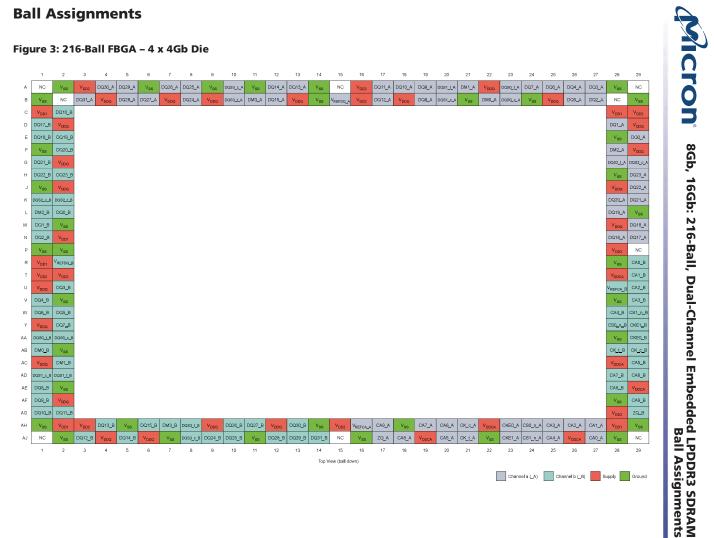

Solution 8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM **Features**

Table 103:	CS_n Setup and Hold Base Values	. 147
	Derating Values for AC/DC-Based ^t IS/ ^t IH (AC150)	
Table 105:	Derating Values for AC/DC-Based ^t IS/ ^t IH (AC135)	. 147
Table 106:	Required Time for Valid Transition – $^{t}VAC > V_{IH(AC)}$ and $< V_{IL(AC)}$. 148
	Data Setup and Hold Base Values	
Table 108:	Derating Values for AC/DC-Based ^t DS/ ^t DH (AC150)	. 154
Table 109:	Derating Values for AC/DC-Based ^t DS/ ^t DH (AC135)	. 154
Table 110:	Required Time for Valid Transition – $^{t}VAC > V_{IH(AC)}$ or $< V_{IL(AC)}$. 155

10

Preliminary

PDF: embedded_lpddr3_2e0f_20151022 216b_12x12_2ch_8-16gb_2e0f_embedded-lpddr3.pdf – Rev. A 10/15 EN

Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2015 Micron Technology, Inc. All rights reserved.

1

Preliminary

Ball Descriptions

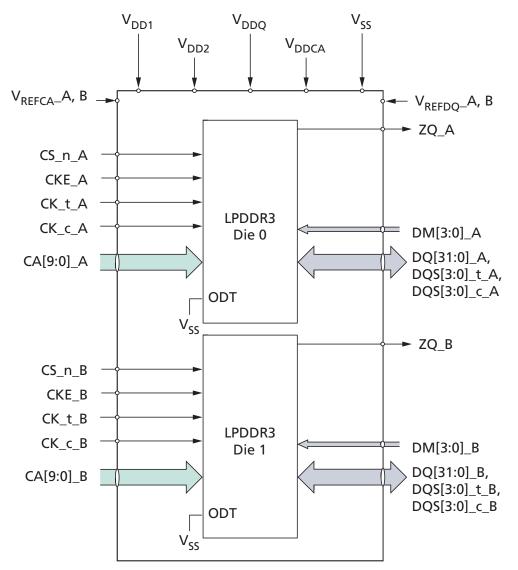
The ball/pad description table below is a comprehensive list of signals for the device family. All signals listed may not be supported on this device. See ball assignments for information specific to this device.

Table 4: Ball/Pad Descriptions

Symbol	Туре	Description
CA[9:0]_A, CA[9:0]_B	Input	Command/address inputs: Provide the command and address inputs according to the command truth table. A separate CA[9:0] is provided for each channel (A and B).
CK_t_B, CK_t_A	Input	Clock: Differential clock inputs. All CA inputs are sampled on both rising and falling
CK_t_B, CK_t_A CK_c_B, CK_c_A	mput	edges of CK. CS and CKE inputs are sampled at the rising edge of CK. AC timings are referenced to clock. A separate CK_t/CK_c is provided for each channel (A and B).
CKE[1:0]_A, CKE[1:0]_B	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is considered part of the command code. CKE is sampled on the rising edge of CK. A separate CKE is provided for each channel (A and B).
CS[1:0]_n_A, CS[1:0]_n_B	Input	Chip select: Considered part of the command code and is sampled on the rising edge of CK. A separate CS_n is provided for each channel (A and B).
DM[3:0]_B, DM[3:0]_A	Input	Input data mask: Input mask signal for write data. Although DM balls are input-only, the DM loading is designed to match that of DQ and DQS balls. DM[3:0] is DM for each of the four data bytes, respectively. A separate DM[3:0] is provided for each channel (A and B).
ODT_B, ODT_A	Input	On-die termination: Enables and disables termination on the DRAM DQ bus according to the specified mode register settings. For packages that do not support ODT, the ODT signal may be grounded internally. A separate ODT provided for each channel (A and B).
DQ[31:0]_B, DQ[31:0]_A	I/O	Data input/output: Bidirectional data bus. A separate DQ[11:0] is provided for each channel (A and B).
DQS[3:0]_t_B, DQS[3:0]_t_A, DQS[3:0]_c_B, DQS[3:0]_c_A	I/O	Data strobe: Bidirectional (used for read and write data) and complementary (DQS_t and DQS_c). It is edge-aligned output with read data and centered input with write data. DQS[3:0]_t/DQS[3:0]_c is DQS for each of the four data bytes, respectively. A separate DQS[3:0]_t and DQS[3:0]_c is provided for each channel (A and B).
V _{DDQ}	Supply	DQ power supply: Isolated on the die for improved noise immunity.
V _{SSQ}	Supply	DQ ground: Isolated on the die for improved noise immunity.
V _{DDCA}	Supply	Command/address power supply: Command/address power supply.
V _{SSCA}	Supply	Command/address ground: Isolated on the die for improved noise immunity.
V _{DD1}	Supply	Core power: Supply 1.
V _{DD2}	Supply	Core power: Supply 2.
V _{SS}	Supply	Common ground.
V _{REFCA} B, V _{REFCA} A V _{REFDQ} B, V _{REFDQ} A	Supply	Reference voltage: V_{REFCA} is reference for command/address input buffers, V_{REFDQ} is reference for DQ input buffers. A separate V_{REFCA} and V_{REFDQ} provided for each channel (A and B).
ZQ_B, ZQ_A	Reference	External reference ball for output drive calibration: This ball is tied to an external 240 Ω resistor (RZQ), which is tied to V _{SSQ} . A separate ZQ is provided for each channel (A and B).

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM Ball Descriptions

Symbol	Туре	escription	
DNU	-	o not use: Must be grounded or left floating.	
NC	-	No connect: Not internally connected.	
(NC)		No connect: Balls indicated as (NC) are no connects; however, they could be connected together internally.	

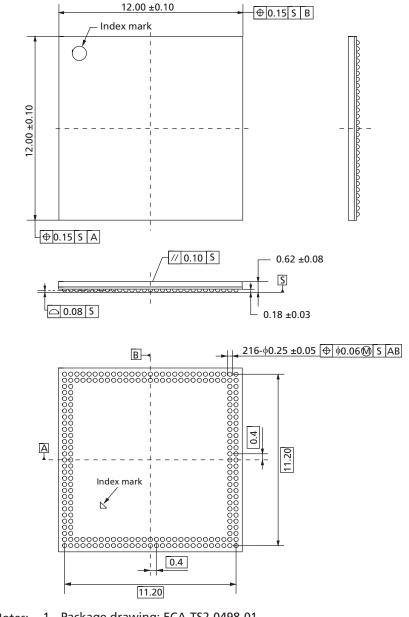

Table 4: Ball/Pad Descriptions (Continued)

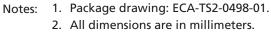
8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM Package Block Diagrams

Package Block Diagrams

Figure 4: Dual-Die, Dual-Channel Package Block Diagram

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM Package Block Diagrams


Figure 5: Quad-Die, Dual-Channel Package Block Diagram


Note: 1. The ODT input is connected to rank 0. The ODT input to rank 1 is connected to V_{SS} in the package.

Package Dimensions

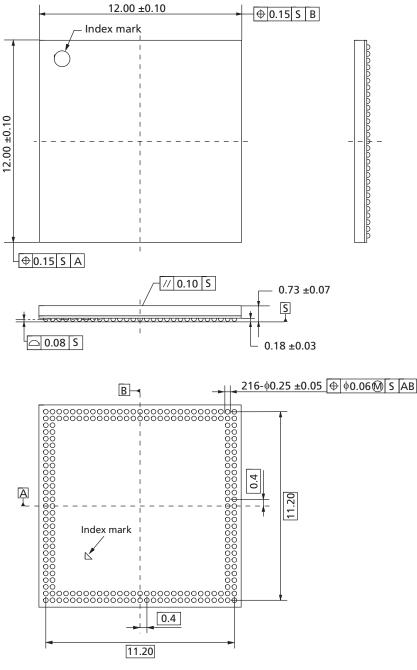


Figure 6: 216-Ball FBGA (12mm x 12mm) – EDF8164A3PK

Figure 7: 216-Ball FBGA (12mm x 12mm) – EDFA164A2PK

Notes:1. Package drawing: ECA-TS2-0499-01.2. All dimensions are in millimeters.

MR0, MR5-MR8 Readout

Table 5: Mode Register Contents

Mode Register	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0		
MR0		OP6 = 1b indicates support for WL set B OP7 = 1b indicates that the option for RL3 is supported								
		OP6 and OP7 =1b for this package								
MR5		Manufacturer ID = 0000 0011b								
MR6		Revision ID1 = 0000 0010b: Revision C								
MR7		Revision ID2 = (RFU)								
MR8	I/O Width Density Type						ре			
	00b: x32 0110b: 4Gb 11b: 58							: \$8		

Note: 1. The contents of MR0 and MR5–MR8 will reflect the manufacturer ID, die revision, and interface configurations for each die for each package.

I_{DD} Specifications – Dual Die, Dual Channel

Table 6: I_{DD} Specifications

 V_{DD2} , V_{DDQ} , V_{DDCA} = 1.14–1.30V; V_{DD1} = 1.70–1.95V; T_{C} = -30°C to +85°C

		Speed					
Symbol	Supply	1600	1333	Unit	Parameter/Condition		
I _{DD01}	V _{DD1}	12	12	mA	All devices in operating one bank active-precharge		
I _{DD02}	V _{DD2}	60	60	1	^t CK = ^t CK(avg) MIN; ^t RC = ^t RC (MIN); CKE is HIGH; CS_		
I _{DD0,in}	V _{DDCA} + V _{DDQ}	12	12		is HIGH between valid commands; CA bus inputs are SWITCHING;		
					Data bus inputs are STABLE		
I _{DD2P1}	V _{DD1}	0.8	0.8	mA	All devices in idle power-down standby current		
I _{DD2P2}	V _{DD2}	1.8	1.8]	^t CK = ^t CK(avg) MIN; CKE is LOW; CS_n is HIGH;		
I _{DD2P,in}	$V_{DDCA} + V_{DDQ}$	0.2	0.2		All banks are idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE		
I _{DD2PS1}	V _{DD1}	0.8	0.8	mA	All devices in idle power-down standby current with		
I _{DD2PS2}	V _{DD2}	1.8	1.8	1	clock stop		
I _{DD2PS,in}	V _{DDCA} + V _{DDQ}	0.2	0.2		CK_t = LOW, CK_c = HIGH; CKE is LOW; CS_n is HIGH; All banks are idle; CA bus inputs are STABLE; Data bus inputs are STABLE		
I _{DD2N1}	V _{DD1}	0.8	0.8	mA	All devices in idle non power-down standby current		
I _{DD2N2}	V _{DD2}	23	22	1	^t CK = ^t CK(avg) MIN; CKE is HIGH;		
I _{DD2N,in}	V _{DDCA} + V _{DDQ}	12	12		CS_n is HIGH; All banks are idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE		
I _{DD2NS1}	V _{DD1}	0.8	0.8	mA	All devices in idle non power-down standby current		
I _{DD2NS2}	V _{DD2}	19	19	1	with clock stop		
I _{DD2NS,in}	V _{DDCA} + V _{DDQ}	12	12	1	CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS_n is HIGH; All banks are idle;		
					CA bus inputs are STABLE; Data bus inputs are STABLE		
I _{DD3P1}	V _{DD1}	1.4	1.4	mA	All devices in active power-down standby current		
I _{DD3P2}	V _{DD2}	10	10	1	^t CK = ^t CK(avg) MIN; CKE is LOW;		
I _{DD3P,in}	V _{DDCA} + V _{DDQ}	0.2	0.2		CS_n is HIGH; One bank is active; CA bus inputs are SWITCHING; Data bus inputs are STABLE		
I _{DD3PS1}	V _{DD1}	1.4	1.4	mA	All devices in active power-down standby current with		
I _{DD3PS2}	V _{DD2}	10	10]	clock stop		
I _{DD3PS} ,in	V _{DDCA} + V _{DDQ}	0.2	0.2		CK_t = LOW, CK_c = HIGH; CKE is LOW; CS_n is HIGH; One bank is active; CA bus inputs are STABLE; Data bus inputs are STABLE		
I _{DD3N1}	V _{DD1}	2.0	2.0	mA	All devices in active non power-down standby current		
I _{DD3N2}	V _{DD2}	25	24	1	^t CK = ^t CK(avg) MIN; CKE is HIGH;		
I _{DD3N,in}	V _{DDCA} + V _{DDQ}	12	12	1	CS_n is HIGH; One bank is active; CA bus inputs are SWITCHING;		
					Data bus inputs are STABLE		

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM I_{DD} Specifications – Dual Die, Dual Channel

Table 6: I_{DD} Specifications (Continued)

		Speed			+85°C	
Symbol	Supply	1600	1333	Unit	Parameter/Condition	
I _{DD3NS1}	V _{DD1}	2.0	2.0	mA	All devices in active non power-down standby current	
I _{DD3NS2}	V _{DD2}	21	21		with clock stop	
I _{DD3NS} ,in	V _{DDCA} + V _{DDQ}	12	12		CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS_n is HIGH; One bank is active; CA bus inputs are STABLE; Data bus inputs are STABLE	
I _{DD4R1}	V _{DD1}	4.0	4.0	mA	All devices in operating burst read	
I _{DD4R2}	V _{DD2}	400	350	-	^t CK = ^t CK(avg) MIN; CS_n is HIGH between valid com-	
I _{DD4R,in}	V _{DDCA}	12	12	_	mands; One bank is active; BL = 8; RL = RL (MIN); CA bus inputs are SWITCHING; 50% data change occurs at each burst transfer	
I _{DD4W1}	V _{DD1}	4.0	4.0	mA	All devices in operating burst write	
I _{DD4W2}	V _{DD2}	380	330		${}^{t}CK = {}^{t}CK(avg)$ MIN; CS_n is HIGH between valid com	
I _{DD4W,in}	V _{DDCA} + V _{DDQ}	12	12		mands; One bank is active; BL = 8; WL = WL (MIN); CA bus inputs are SWITCHING; 50% data change occurs at each burst transfer	
I _{DD51}	V _{DD1}	40	40	mA	All devices in all bank auto-refresh ^t CK = ^t CK(avg) MIN; CKE is HIGH between valid com-	
I _{DD52}	V _{DD2}	200	200			
I _{DD5,in}	V _{DDCA} + V _{DDQ}	12	12		mands; ^t RC = ^t RFCab (MIN); Burst refresh; CA bus inputs are SWITCHING; Data bus inputs are STABLE	
I _{DD5AB1}	V _{DD1}	4.0	4.0	mA	All devices in all bank auto-refresh	
I _{DD5AB2}	V _{DD2}	24	23	1	^t CK = ^t CK(avg) MIN; CKE is HIGH between valid com-	
I _{DD5AB,in}	V _{DDCA} + V _{DDQ}	12	12		mands; ^t RC = ^t REFI; CA bus inputs are SWITCHING; Data bus inputs are STABLE	
I _{DD5PB1}	V _{DD1}	4.0	4.0	mA	All devices in per bank auto-refresh	
I _{DD5PB2}	V _{DD2}	24	23		^t CK = ^t CK(avg) MIN; CKE is HIGH between valid com-	
I _{DD5PB,in}	V _{DDCA} + V _{DDQ}	12	12		mands; ^t RC = ^t REFIpb; CA bus inputs are SWITCHING; Data bus inputs are STABLE	
I _{DD81}	V _{DD1}	32	32	μA	All devices in deep power-down	
I _{DD82}	V _{DD2}	12	12]	CK_t = LOW, CK _c = HIGH; CKE is LOW;	
I _{DD8,in}	V _{DDCA} + V _{DDQ}	24	24]	CA bus inputs are STABLE; Data bus inputs are STABLE	

 V_{DD2} , V_{DDC0} , $V_{DDC4} = 1.14 - 1.30V$; $V_{DD1} = 1.70 - 1.95V$; $T_{C} = -30^{\circ}C$ to $+85^{\circ}C$

Notes: 1. Published I_{DD} values are the maximum of the distribution of the arithmetic mean.

2. I_{DD} current specifications are tested after the device is properly initialized.

Table 7: I_{DD6} Partial-Array Self Refresh Current at 45°C

V_{DD2}, V_{DDQ}, V_{I}	_{DDCA} = 1.14–1.30\	$V_{DD1} = 1.70 - 1$.95V	1
PASR	Supply	Value	Unit	Parameter/Condition
Full array	V _{DD1}	400	μΑ	All devices in self-refresh
	V _{DD2}	1600		CK_t = LOW, CK_c = HIGH;
	$V_{DDCA} + V_{DDQ}$	20		CKE is LOW; CA bus inputs are STABLE;
1/2 array	V _{DD1}	320		Data bus inputs are STABLE
	V _{DD2}	1000		
	$V_{DDCA} + V_{DDQ}$	20		
1/4 array	V _{DD1}	260		
	V _{DD2}	600		
	$V_{DDCA} + V_{DDQ}$	20		
1/8 array	V _{DD1}	240		
	V _{DD2}	400		
	$V_{DDCA} + V_{DDQ}$	20		

Note: 1. I_{DD6} 45°C is typical of the distribution of the arithmetic mean.

Table 8: IDD6 Partial-Array Self Refresh Current at 85°C

PASR	Supply	Value	Unit	Parameter/Condition
Full array	V _{DD1}	1800	μA	All devices in self refresh
	V _{DD2}	6400	$CK_t = LOW, CK_c = HIGH;$	
	$V_{DDCA} + V_{DDQ}$	24		CKE is LOW; CA bus inputs are STABLE;
1/2 array	V _{DD1}	1300		Data bus inputs are STABLE
	V _{DD2}	4400		
	$V_{DDCA} + V_{DDQ}$	24		
1/4 array	V _{DD1}	1100		
	V _{DD2}	3400		
	$V_{DDCA} + V_{DDQ}$	24		
1/8 array	V _{DD1}	1000		
	V _{DD2}	2800]	
	$V_{DDCA} + V_{DDQ}$	24]	

Note: 1. I_{DD6} 85°C is the maximum of the distribution of the arithmetic mean.

Solution 8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM I_{DD} Specifications – Quad Die, Dual Channel

I_{DD} Specifications – Quad Die, Dual Channel

Table 9: I_{DD} Specifications

 V_{DD2} , V_{DDQ} , $V_{DDCA} = 1.14 - 1.30V$; $V_{DD1} = 1.70 - 1.95V$; $T_{C} = -30^{\circ}C$ to +85°C

			Speed			
Symbol	Supply	1866	1600	1333	Unit	Parameter/Condition
I _{DD01}	V _{DD1}	12	12	12	mA	2 devices in operating one bank active-precharge;
I _{DD02}	V _{DD2}	62	60	60	1	2 devices in deep power-down. Conditions for op-
I _{DD0,in}	V _{DDCA} + V _{DDQ}	12	12	12		erating devices are: ^t CK = ^t CK(avg) MIN; ^t RC = ^t RC (MIN); CKE is HIGH; CS_n is HIGH between valid commands; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD2P1}	V _{DD1}	1.6	1.6	1.6	mA	All devices in idle power-down standby current ^t CK
I _{DD2P2}	V _{DD2}	3.6	3.6	3.6		= ^t CK(avg) MIN; CKE is LOW; CS_n is HIGH;
I _{DD2P,in}	V _{DDCA} + V _{DDQ}	0.4	0.4	0.4		All banks are idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD2PS1}	V _{DD1}	1.6	1.6	1.6	mA	All devices in idle power-down standby current
I _{DD2PS2}	V _{DD2}	3.6	3.6	3.6		with clock stop
I _{DD2PS,in}	V _{DDCA} + V _{DDQ}	0.4	0.4	0.4		CK_t = LOW, CK_c = HIGH; CKE is LOW; CS_n is HIGH; All banks are idle; CA bus inputs are STABLE; Data bus inputs are STABLE
I _{DD2N1}	V _{DD1}	1.6	1.6	1.6	mA	All devices in idle non power-down standby cur-
I _{DD2N2}	V _{DD2}	48	46	44	1	rent
I _{DD2N,in}	V _{DDCA} + V _{DDQ}	24	24	24		^t CK = ^t CK(avg) MIN; CKE is HIGH; CS_n is HIGH; All banks are idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD2NS1}	V _{DD1}	1.6	1.6	1.6	mA	All devices in idle non power-down standby cur-
I _{DD2NS2}	V _{DD2}	38	38	38	1	rent with clock stop
I _{DD2NS} ,in	V _{DDCA} + V _{DDQ}	24	24	24	_	CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS_n is HIGH; All banks are idle; CA bus inputs are STABLE; Data bus inputs are STABLE
I _{DD3P1}	V _{DD1}	2.8	2.8	2.8	mA	All devices in active power-down standby current
I _{DD3P2}	V _{DD2}	20	20	20		${}^{t}CK = {}^{t}CK(avg) MIN; CKE is LOW;$
I _{DD3P,in}	V _{DDCA} + V _{DDQ}	0.4	0.4	0.4		CS_n is HIGH; One bank is active; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD3PS1}	V _{DD1}	2.8	2.8	2.8	mA	All devices in active power-down standby current
I _{DD3PS2}	V _{DD2}	20	20	20	1	with clock stop
I _{DD3PS,in}	V _{DDCA} + V _{DDQ}	0.4	0.4	0.4		CK_t = LOW, CK_c = HIGH; CKE is LOW; CS_n is HIGH; One bank is active; CA bus inputs are STABLE; Data bus inputs are STABLE

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM I_{DD} Specifications – Quad Die, Dual Channel

Table 9: I_{DD} Specifications (Continued)

	V _{DDCA} = 1.14–1.30		Speed			
Symbol	Supply	1866	1600	1333	Unit	Parameter/Condition
I _{DD3N1}	V _{DD1}	4.0	4.0	4.0	mA	All devices in active non power-down standby cur-
I _{DD3N2}	V _{DD2}	52	50	48		rent
I _{DD3N,in}	V _{DDCA} + V _{DDQ}	24	24	24		^t CK = ^t CK(avg) MIN; CKE is HIGH; CS_n is HIGH; One bank is active; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD3NS1}	V _{DD1}	4.0	4.0	4.0	mA	All devices in active non power-down standby cur-
I _{DD3NS2}	V _{DD2}	42	42	42		rent with clock stop
I _{DD3NS} ,in	V _{DDCA} + V _{DDQ}	24	24	24		CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS_n is HIGH; One bank is active; CA bus inputs are STABLE; Data bus inputs are STABLE
I _{DD4R1}	V _{DD1}	4.0	4.0	4.0	mA	2 devices in operating burst read; 2 devices in deep
I _{DD4R2}	V _{DD2}	460	400	350		power-down.
I _{DD4R,in}	V _{DDCA}	12	12	12		Conditions for operating devices are: ^t CK = ^t CK(avg) MIN; CS_n is HIGH between valid commands; One bank is active; BL = 8; RL = RL (MIN); CA bus inputs are SWITCHING; 50% data change occurs at each burst transfer
I _{DD4W1}	V _{DD1}	4.0	4.0	4.0	mA	2 devices in operating burst write; 2 devices in
I _{DD4W2}	V _{DD2}	440	380	330		deep power-down
I _{DD4W,in}	V _{DDCA} + V _{DDQ}	12	12	12		Conditions for operating devices are: ^t CK = ^t CK(avg) MIN; CS_n is HIGH between valid commands; One bank is active; BL = 8; WL = WL (MIN); CA bus inputs are SWITCHING; 50% data change occurs at each burst transfer
I _{DD51}	V _{DD1}	40	40	40	mA	2 devices in all bank auto-refresh; 2 devices in
I _{DD52}	V _{DD2}	200	200	200		deep power-down.
I _{DD5,in}	V _{DDCA} + V _{DDQ}	12	12	12		Conditions for operating devices are: ^t CK = ^t CK(avg) MIN; CKE is HIGH between valid commands; ^t RC = ^t RFCab (MIN); Burst refresh; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD5AB1}	V _{DD1}	4.0	4.0	4.0	mA	2 devices in all bank auto-refresh; 2 devices in
I _{DD5AB2}	V _{DD2}	25	24	23		deep power-down.
I _{DD5AB,in}	V _{DDCA} + V _{DDQ}	12	12	12		Conditions for operating devices are: ^t CK = ^t CK(avg) MIN; CKE is HIGH between valid commands; ^t RC = ^t REFI; CA bus inputs are SWITCHING; Data bus inputs are STABLE

 V_{DD2} , V_{DD00} , $V_{DDCA} = 1.14-1.30V$; $V_{DD1} = 1.70-1.95V$; $T_{C} = -30^{\circ}C$ to $+85^{\circ}C$

8Gb, 16Gb: 216-Ball, Dual-Channel Embedded LPDDR3 SDRAM I_{DD} Specifications – Quad Die, Dual Channel

V _{DD2} , V _{DDQ} , V	/ _{DDCA} = 1.14–1.30	V; V _{DD1} = 1	.70–1.95V; 1	Γ _C = –30°C t	:o +85°0	1
		Speed				
Symbol	Supply	1866	1600	1333	Unit	Parameter/Condition
I _{DD5PB1}	V _{DD1}	4.0	4.0	4.0	mA	2 devices in per bank auto-refresh; 2 devices in
I _{DD5PB2}	V _{DD2}	25	24	23		deep power-down.
I _{DD5PB} ,in	V _{DDCA} + V _{DDQ}	12	12	12		Conditions for operating devices are: ^t CK = ^t CK(avg) MIN; CKE is HIGH between valid commands; ^t RC = ^t REFIpb; CA bus inputs are SWITCHING; Data bus inputs are STABLE
I _{DD81}	V _{DD1}	64	64	64	μA	All devices in deep power-down
I _{DD82}	V _{DD2}	24	24	24		CK_t = LOW, CK _c = HIGH; CKE is LOW;
I _{DD8,in}	V _{DDCA} + V _{DDQ}	48	48	48		CA bus inputs are STABLE; Data bus inputs are STABLE

Table 9: I_{DD} Specifications (Continued)

Notes: 1. Published I_{DD} values are the maximum of the distribution of the arithmetic mean. 2. I_{DD} current specifications are tested after the device is properly initialized.

Table 10: IDD6 Partial-Array Self Refresh Current at 45°C

PASR	Supply	Value	Unit	Parameters/Conditions
Full array	V _{DD1}	800	μA	All devices in self refresh
	V _{DD2}	3200		$CK_t = LOW, CK_c = HIGH;$
	$V_{DDCA} + V_{DDQ}$	40	-	CKE is LOW; CA bus inputs are STABLE;
1/2 array	V _{DD1}	640		Data bus inputs are STABLE
	V _{DD2}	2000		
	$V_{DDCA} + V_{DDQ}$	40		
1/4 array	V _{DD1}	520		
	V _{DD2}	1200		
	$V_{DDCA} + V_{DDQ}$	40		
1/8 array	V _{DD1}	480		
	V _{DD2}	800		
	$V_{DDCA} + V_{DDQ}$	40		

Note: 1. I_{DD6} 45°C is typical of the distribution of the arithmetic mean.

Table 11: I_{DD6} Partial-Array Self Refresh Current at 85°C

PASR	_{DDCA} = 1.14–1.30∖ Supply	Value	Unit	Parameters/Conditions
Full array	V _{DD1}	3600	μA	All devices in self refresh
	V _{DD2}	12,800		$CK_t = LOW, CK_c = HIGH;$
	$V_{DDCA} + V_{DDQ}$	48]	CKE is LOW; CA bus inputs are STABLE;
1/2 array	V _{DD1}	2600	· · · ·	Data bus inputs are STABLE
	V _{DD2}	8800		
	$V_{DDCA} + V_{DDQ}$	48		
1/4 array	V _{DD1}	2200		
	V _{DD2}	6800		
	$V_{DDCA} + V_{DDQ}$	48		
1/8 array	V _{DD1}	2000		
	V _{DD2}	5600		
	$V_{DDCA} + V_{DDQ}$	48		

Note: 1. I_{DD6} 85°C is the maximum of the distribution of the arithmetic mean.