imall

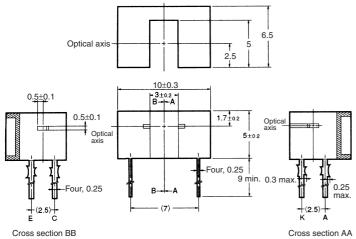
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

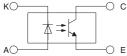
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



omron


Photomicrosensor (Transmissive) E-SX1046

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.

A

Κ

С

Е

Unless otherwise specified, the tolerances are as shown below.

О е	Dimensions	Tolerance
	3 mm max.	±0.3
Name	3 < mm ≤ 6	±0.375
Anode	6 < mm ≤ 10	±0.45
Cathode Collector	10 < mm ≤ 18	±0.55
Emitter	18 < mm ≤ 30	±0.65
	L	1

Features

- With a horizontal sensing aperture.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

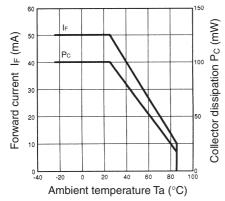
Absolute	Maximum	Ratings	(Ta = 25°C)
----------	---------	---------	-------------

	Item	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward cur- rent	I _{FP}	1 A (see note 2)
	Reverse voltage	V _R	4 V
Detector	Collector–Emitter voltage	V _{CEO}	30 V
	Emitter–Collector voltage	V _{ECO}	
	Collector current	I _C	20 mA
	Collector dissipa- tion	P _c	100 mW (see note 1)
Ambient tem-	Operating	Topr	–25°C to 85°C
perature	Storage	Tstg	–30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

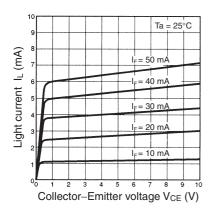
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

- 2. The pulse width is 10 μs maximum with a frequency of 100 Hz.
- 3. Complete soldering within 10 seconds.

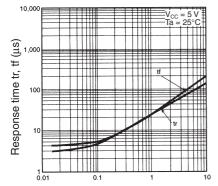
■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	V _R = 4 V
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Light current	I _L	1.2 mA min., 14 mA max.	I _F = 20 mA, V _{CE} = 5 V
	Dark current	I _D	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}		
	Collector–Emitter saturated volt- age	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_{\rm F} = 20$ mA, $I_{\rm L} = 0.1$ mA
	Peak spectral sensitivity wave- length	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	$V_{CC} = 5 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ I}_{L} = 5 \text{ mA}$
Falling time	•	tf	4 μs typ.	$V_{CC} = 5 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ I}_{L} = 5 \text{ mA}$

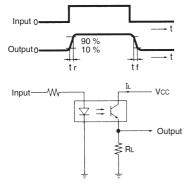
Be sure to read Precautions on page 24. A


OMRON

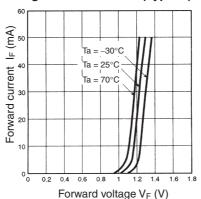
Engineering Data


Forward Current vs. Collector Dissipation Temperature Rating

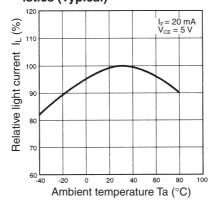
Light Current vs. Collector–Emitter Voltage Characteristics (Typical)



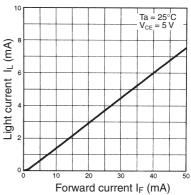
Response Time vs. Load Resistance Characteristics (Typical)

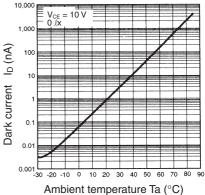


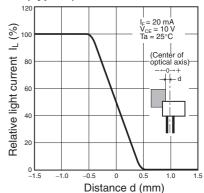
Load resistance R_L (k Ω)


Response Time Measurement Circuit


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

