

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LogiCORE IP SMPTE2022-5/6 Video over IP Receiver v1.0

Product Guide

PG033 April 24, 2012

Table of Contents

hapter 1: Overview	
Feature Summary	
Applications	
Licensing	
Simulation Only	
Full System Hardware Evaluation	
Full	
Installing Your License File	
Ordering Information	
napter 2: Product Specification	
Standards Compliance	9
Performance	
Maximum Frequencies	
Resource Utilization	
Port Descriptions	
General Interface	
AXI4 Memory Interface	
AXI4-Stream Slave Interface	
Triple Rate SDI Interface	
Ethernet Received Interface	
AXI4-Lite Control Interface	
Register Space	
CONTROL (0x000) Register	
RESET (0x004) Register	
CHANNEL (0x030) Register	
CHAN_EN (0x100) Register	
FIREWALL_SEL (0x110) Register	
START_BUFFER_SIZE (0x12C) Register	
VID_SRC_FMT (0x154) Register	
FEC_L (0x154) Register	
FEC_D (0x158) Register	
SDI STATUS (0v158) Pagistar	2

Chapter 3: Customizing and Generating the Core Graphical User Interface						
Output Generation	23					
Chapter 4: Designing with the Core						
Chapter 5: Constraining the Core						
Required Constraints	25					
Device, Package, and Speed Grade Selections	25					
Clock Frequencies						
Clock Management						
Clock Placement						
Banking						
Transceiver Placement						
I/O Standard and Placement	26					
Chapter 6: Detailed Example Design						
Appendix A: Debugging						
Appendix B: Additional Resources						
Xilinx Resources	29					
Solution Centers	29					
Technical Support	29					
Revision History	30					
Notice of Disclaimer	30					

LogiCORE IP SMPTE2022-5/6 Video over IP Receiver v1.0

Introduction

The Xilinx® LogiCORE™ IP SMPTE2022-5/6 Video over IP Receiver is a module for broadcast applications that requires bridging between SMPTE video connectivity standards (SD/HD/3G-SDI) and 10Gb/s networks. The module is capable of recovering IP packets lost to network transmission errors and ensure the picture quality of uncompressed, high bandwidth professional video. The core is for developing internet protocol-based systems to reduce overall cost in broadcast facility for distribution and routing of audio video data.

Features

- Handle up to 6 channels of SD/HD/3G-SDI streams (3 for the case of 3G-SDI) according to SMPTE2022-6.
- Per stream basis Forward Error Correction (FEC) in accordance to SMPTE2022-5
- Supports Level A and Level B FEC operations
- Supports block-aligned and non block-aligned FEC operations
- Supports Virtual Local Area Network (VLAN)
- AXI4-Stream data interfaces
- AXI4-Lite control interface
- Configurable channel selection based on IP source address, User Datagram Protocol (UDP) destination port, and Real-time Transport Protocol (RTP) Synchronization Source (SSRC) identifier over AXI4-Lite interface
- Supports SD-SDI, HD-SDI, 3G-SDI Level-A, 3G-SDI Level-B single stream and 3G-SDI Level-B dual stream

LogiCORE IP Facts Table					
Core Specifics					
Supported Device Family ⁽¹⁾	Kintex™-7, Virtex®-6				
Supported User Interfaces	AXI4-Lite, AXI4-Stream, AXI4				
Resources	See Table 2-1, Table 2-2, Table 2-3, and Table 2-4.				
	Provided with Core				
Design Files	NGC netlist, Encrypted HDL				
Example Design	Not Provided				
Test Bench	Not Provided				
Constraints File	Not Provided				
Simulation Model	VHDL or Verilog Structural				
Supported S/W Driver	N/A				
	Tested Design Tools				
Design Entry Tools	CORE Generator™ tool				
Simulation ⁽²⁾	Mentor Graphics ModelSim				
Synthesis Tools ⁽²⁾	Xilinx Synthesis Technology (XST)				
	Support				
Provide	Provided by Xilinx @ www.xilinx.com/support				

Notes:

- For a complete listing of supported devices, see the <u>release</u> notes for this core.
- 2. For the supported versions of the tools, see the <u>ISE Design</u> <u>Suite 14: Release Notes Guide</u>.

Overview

As broadcast and communications markets converge, and the use of IP networks for transport of video streams becomes more attractive to broadcasters and telecommunication companies alike, the adoption of 10 Gb/s Ethernet for the transmission of multiple uncompressed Serial Digital Interface (SDI) streams is becoming a major customer requirement. The industry is primarily looking at the SMPTE2022 set of standards to create an open and interoperable way of connecting video over 10GbE equipment together and ensuring that Quality of Service (QoS) is high and packet loss is kept to a minimum or recovered through FEC. As shown in Figure 1-1, high bit rate SMPTE2022-5/6 is aimed at contribution networks (for example, between broadcast center and regional studio).

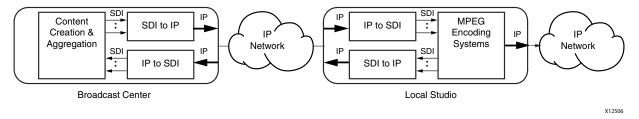


Figure 1-1: High Bit Rate SMPTE2022-5/6 between Broadcast Center and Local Studio

The core includes Forward Error Correction (FEC). FEC protects the video stream during transport of high-quality video over IP networks. With FEC, the transmitter adds systematically generated redundant data to its video. This carefully designed redundancy allows the receiver to detect and correct a limited number of packet errors occurring anywhere in the video without the need to ask the transmitter for additional video data.

These errors, in the form of lost video packets, can be caused by many reasons, from thermal noise to storage system defects and transmission noise introduced by the environment. FEC gives the receiver the ability to correct these errors without needing a reverse channel to request retransmission of data. In real time systems, the latency is too great to request a retransmission. The ability of Xilinx FPGAs to bridge the broadcast and the communications industries by performing highly integrated real-time video interfaces help broadcasters reduce costs as well as reduce the overall time it takes to acquire, edit and produce content. Now that video can be reliably delivered over 10 Gb/s Ethernet (10GbE), broadcasters can replace some of the expensive mobile infrastructures supporting outside live broadcasts, as well as enable remote production from existing fixed studio set ups, which dramatically reduces both capital expenditure and operating expenses.

Feature Summary

The core maps Ethernet packets into raw SD/HD/3G-SDI video streams and is capable of recovering IP packets lost to network transmission errors to ensure the highest picture quality of uncompressed, high bandwidth professional video.

You can configure and instantiate the core from the CORE Generator™ tool. Core functionality can be controlled dynamically through an AXI4-Lite interface.

Applications

- Transport uncompressed high bandwidth professional video streams over IP networks
- Support real-time audio/video applications such as contribution, primary distribution, and digital cinema

Licensing

The core provides the following three licensing options:

- Simulation Only
- Full System Hardware Evaluation
- Full

After installing the required Xilinx software and IP Service Packs, choose a license option.

Simulation Only

The Simulation Only Evaluation license key is provided with the Xilinx® CORE Generator tool. This key lets you assess core functionality with your own design and demonstrates the various interfaces to the core in simulation. (Functional simulation is supported by a dynamically generated HDL structural model.)

No action is required to obtain the Simulation Only Evaluation license key; it is provided by default with the Xilinx CORE Generator system.

Full System Hardware Evaluation

The Full System Hardware Evaluation license is available at no cost and lets you fully integrate the core into an FPGA design and place-and-route the design.

In addition, the license key lets you generate a bitstream from the placed and routed design, which can then be downloaded to a supported device and tested in hardware. The core can be tested in the target device for a limited time before timing out (resetting to default values and the output video becoming black), at which time it can be reactivated by reconfiguring the device.

To obtain a Full System Hardware Evaluation license, do the following:

- 1. Navigate to the product page for this core.
- 2. Click Evaluate.
- 3. Follow the instructions to install the required Xilinx software and IP Service Packs.

Full

The Full license key is available when you purchase the core and provides full access to all core functionality both in simulation and in hardware, including:

- Full implementation support including place and route and bitstream generation
- Full functionality in the programmed device with no time outs

To obtain a Full license key, you must purchase a license for the core. Click the "Order" link on the Xilinx.com IP core product page for information on purchasing a license for this core.

Installing Your License File

The Simulation Only Evaluation license key is provided with the CORE Generator system and does not require installation of an additional license file. For the Full System Hardware Evaluation license and the Full license, an email will be sent to you containing instructions for installing your license file. Additional details about IP license key installation can be found in the Integrated Software Environment (ISE®) Design Suite Installation, Licensing and Release Notes document.

Ordering Information

The core is provided under the <u>Core License Agreement</u> and can be generated using the Xilinx CORE Generator tool. The CORE Generator system is shipped with Xilinx ISE Design Suite development software.

An evaluation license for the core is shipped with the CORE Generator system. To access the full functionality of the core, including FPGA bitstream generation, a full license must be obtained from Xilinx. For more information, visit the SMPTE2022-5/6 Video over IP Receiver product page.

Contact your local Xilinx <u>sales representative</u> for pricing and availability of additional Xilinx LogiCORE modules and software. Information about additional Xilinx LogiCORE IP modules is available on the Xilinx IP Center.

Product Specification

Standards Compliance

The core is compliant with the AXI4, AXI4-Stream and AXI4-Lite interconnect standards. See the "Video IP: AXI Feature Adoption" section of the AXI Reference Guide (UG761) for additional information. The function of the core is compliant with SMPTE 2022-5/6 working draft.

Performance

The following sections detail the performance characteristics of the core.

Maximum Frequencies

The maximum achievable clock frequency can vary. The maximum achievable clock frequency and all resource counts can be affected by other tool options, additional logic in the FPGA, using a different version of Xilinx tools and other factors. See the resource utilization tables for device family specific information.

The core has three clock domains:

- SDI clock domain
- System clock domain recommended running at 200 MHz
- Ethernet clock domain at 156.25 MHz for 10Gb/s bandwidth.

Resource Utilization

For an accurate measure of the usage of primitives, slices, and Configurable Logic Blocks (CLBs) for a particular instance, check the **Display Core Viewer after Generation** check box in the CORE Generator $^{\text{TM}}$ interface.

The information presented in Table 2-1, Table 2-2, Table 2-3, and Table 2-4 is a guide to the resource utilization of the core for Virtex®-6 and Kintex™-7 families.

Table 2-1: Resource Utilization for Virtex-6 Families (FEC not included)

No of channels	FFs	LUTs	Slices	BRAM18	BRAM36
1	8127	6036	2799	3	14
3	13715	9996	4864	7	28
6	22019	14451	7274	13	49

Table 2-2: Resource Utilization for Virtex-6 Families (FEC included)

No of channels	FFs	LUTs	Slices	BRAM18	BRAM36
1	11481	8486	4557	7	44
3	18407	13838	6582	15	72
6	28655	20849	10757	33	121

Table 2-3: Resource Utilization for Kintex-7 Families (FEC not included)

No of channels	FFs	LUTs	Slices	BRAM18	BRAM36
1	8121	6499	2331	3	14
3	13709	11016	3573	7	28
6	22019	15061	6685	13	49

No of channels	FFs	LUTs	Slices	BRAM18	BRAM36
1	11460	8887	3822	7	44
3	18402	14225	5857	15	72
6	28669	20929	9658	33	121

Table 2-4: Resource Utilization for Kintex-7 Families (FEC included)

Port Descriptions

The core uses industry-standard control and data interfaces to connect to other system components. The following sections describe the various interfaces available with the core. Figure 2-2 shows an I/O Diagram of the core. The SDI_TX interface pins depend on the number of channels configured through the GUI.

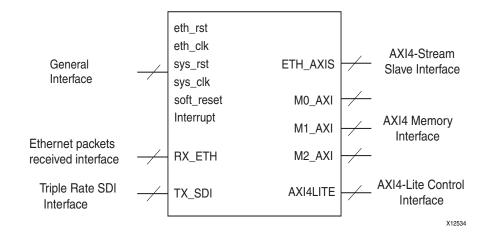


Figure 2-2: SMPTE2022-5/6 Video over IP Receiver Core Top Level Signaling Interface

General Interface

Table 2-5 summarizes the signals which are either shared by or are not part of the dedicated SDI, AXI4-Stream, AXI4, or AXI4-Lite control interfaces.

Table 2-5: General Interface Signals

Signal Name	Direction	Width	Vidth Description	
eth_rst	In	1 Ethernet domain reset.		
eth_clk	In	1	156.25Mhz Ethernet clock.	
sys_rst	In	1	System domain reset.	
sys_clk	In	1	200MHz system clock.	
interrupt	Out	1	Reserved	
soft_reset	Out	1	Core reset from the control register	

AXI4 Memory Interface

The core uses an AXI4 interface to connect to the AXI4 interconnect. The AXI4 Interconnect provides the access to the external memory through the AXI Double Data Rate (DDR) controller. See the *LogiCORE IP AXI Interconnect IP Product Specification* (DS768) for more information.

Table 2-6: AXI4 Memory Interface Signals

Signal Name	Direction	Width	Description
m0_axi_awid	Out	1	Write Address Channel Transaction ID
m0_axi_awaddr	Out	32	Write Address Channel Address
m0_axi_awlen	Out	8	Write Address Channel Burst Length code
m0_axi_awsize	Out	3	Write Address Channel Transfer Size code
m0_axi_awburst	Out	2	Write Address Channel Burst Type
m0_axi_awlock	Out	2	Write Address Channel Atomic Access Type
m0_axi_awcache	Out	4	Write Address Channel Cache Characteristics
m0_axi_awprot	Out	3	Write Address Channel Protection Bits
m0_axi_awqos	Out	4	Write Address Channel Quality of Service
m0_axi_awvalid	Out	1	Write Address Channel Valid
m0_axi_awready	In	1	Write Address Channel Ready
m0_axi_wdata	Out	256	Write Data Channel Data
m0_axi_wstrb	Out	32	Write Data Channel Data Byte Strobes

Table 2-6: AXI4 Memory Interface Signals (Cont'd)

Signal Name	Direction	Width	Description
m0_axi_wlast	Out	1	Write Data Channel Last Data Beat
m0_axi_wvalid	Out	1	Write Data Channel Valid
m0_axi_wready	In	1	Write Data Channel Ready
m0_axi_bid	In	1	Write Response Channel Transaction ID
m0_axi_bresp	In	2	Write Response Channel Response Code
m0_axi_bvalid	In	1	Write Response Channel Valid
m0_axi_bready	Out	1	Write Response Channel Ready
m0_axi_arid	Out	1	Read Address Channel Transaction ID
m0_axi_araddr	Out	32	Read Address Channel Address
m0_axi_arlen	Out	8	Read Address Channel Burst Length code
m0_axi_arsize	Out	3	Read Address Channel Transfer Size code
m0_axi_arburst	Out	2	Read Address Channel Burst Type
m0_axi_arlock	Out	2	Read Address Channel Atomic Access Type
m0_axi_arcache	Out	4	Read Address Channel Cache Characteristics
m0_axi_arprot	Out	3	Read Address Channel Protection Bits
m0_axi_arqos	Out	4	AXI4 Read Address Channel Quality of Service
m0_axi_arvalid	Out	1	Read Address Channel Valid
m0_axi_arready	In	1	Read Address Channel Ready
m0_axi_rid	In	1	Read Data Channel Data
m0_axi_rdata	In	256	Read Data Channel Data
m0_axi_rresp	In	2	Read Data Channel Response Code
m0_axi_rlast	In	1	Read Data Channel Last Data Beat
m0_axi_rvalid	In	1	Read Data Channel Valid
m0_axi_rready	Out	1	Read Data Channel Ready
m1_axi_awid	Out	1	Write Address Channel Transaction ID
m1_axi_awaddr	Out	32	Write Address Channel Address
m1_axi_awlen	Out	8	Write Address Channel Burst Length code
m1_axi_awsize	Out	3	Write Address Channel Transfer Size code
m1_axi_awburst	Out	2	Write Address Channel Burst Type

Table 2-6: AXI4 Memory Interface Signals (Cont'd)

Signal Name	Direction	Width	Description
m1_axi_awlock	Out	2	Write Address Channel Atomic Access Type
m1_axi_awcache	Out	4	Write Address Channel Cache Characteristics
m1_axi_awprot	Out	3	Write Address Channel Protection Bits
m1_axi_awqos	Out	4	Write Address Channel Quality of Service
m1_axi_awvalid	Out	1	Write Address Channel Valid
m1_axi_awready	In	1	Write Address Channel Ready
m1_axi_wdata	Out	256	Write Data Channel Data
m1_axi_wstrb	Out	32	Write Data Channel Data Byte Strobes
m1_axi_wlast	Out	1	Write Data Channel Last Data Beat
m1_axi_wvalid	Out	1	Write Data Channel Valid
m1_axi_wready	In	1	Write Data Channel Ready
m1_axi_bid	In	1	Write Response Channel Transaction ID
m1_axi_bresp	In	2	Write Response Channel Response Code
m1_axi_bvalid	In	1	Write Response Channel Valid
m1_axis_bready	Out	1	Write Response Channel Ready
m1_axi_arid	Out	1	Read Address Channel Transaction ID
m1_axi_araddr	Out	32	Read Address Channel Address
m1_axi_arlen	Out	8	Read Address Channel Burst Length code
m1_axi_arsize	Out	3	Read Address Channel Transfer Size code
m1_axi_arburst	Out	2	Read Address Channel Burst Type
m1_axi_arlock	Out	2	Read Address Channel Atomic Access Type
m1_axi_arcache	Out	4	Read Address Channel Cache Characteristics
m1_axi_arprot	Out	3	Read Address Channel Protection Bits
m1_axi_arqos	Out	4	AXI4 Read Address Channel Quality of Service
m1_axi_arvalid	Out	1	Read Address Channel Valid
m1_axi_arready	In	1	Read Address Channel Ready
m1_axi_rid	In	1	Read Data Channel Data
m1_axi_rdata	In	256	Read Data Channel Data
m1_axi_rresp	In	2	Read Data Channel Response Code
m1_axi_rlast	In	1	Read Data Channel Last Data Beat

Table 2-6: AXI4 Memory Interface Signals (Cont'd)

Signal Name	Direction	Width	Description
m1_axi_rvalid	In	1	Read Data Channel Valid
m1_axi_rready	Out	1	Read Data Channel Ready
m2_axi_awid	Out	1	Write Address Channel Transaction ID
m2_axi_awaddr	Out	32	Write Address Channel Address
m2_axi_awlen	Out	8	Write Address Channel Burst Length code
m2_axi_awsize	Out	3	Write Address Channel Transfer Size code
m2_axi_awburst	Out	2	Write Address Channel Burst Type
m2_axi_awlock	Out	2	Write Address Channel Atomic Access Type
m2_axi_awcache	Out	4	Write Address Channel Cache Characteristics
m2_axi_awprot	Out	3	Write Address Channel Protection Bits
m2_axi_awqos	Out	4	Write Address Channel Quality of Service
m2_axi_awvalid	Out	1	Write Address Channel Valid
m2_axi_awready	In	1	Write Address Channel Ready
m2_axi_wdata	Out	256	Write Data Channel Data.
m2_axi_wstrb	Out	32	Write Data Channel Data Byte Strobes
m2_axi_wlast	Out	1	Write Data Channel Last Data Beat
m2_axi_wvalid	Out	1	Write Data Channel Valid
m2_axi_wready	In	1	Write Data Channel Ready
m2_axi_bid	In	1	Write Response Channel Transaction ID
m2_axi_bresp	In	2	Write Response Channel Response Code
m2_axi_bvalid	In	1	Write Response Channel Valid
m2_axi_bready	Out	1	Write Response Channel Ready

AXI4-Stream Slave Interface

See the LogiCORE IP 10-Gigabit Ethernet MAC User Guide (UG773) for more information.

Table 2-7: AXI4-Stream Interface Signals

Signal Name	Direction	Width	Description
s_axis_aresetn	Out	1	AXI4-Stream active-Low reset for Receive path - 10 Gigabit Ethernet MAC (XGMAC)
s_axis_tdata[63:0]	In	64	AXI4-Stream Data from XGMAC
s_axis_tkeep[7:0]	In	8	AXI4-Stream Data Control from XGMAC
s_axis_tvalid	In	1	AXI4-Stream Data Valid from XGMAC
s_axis_tlast	In	1	AXI4-Stream signal from XGMAC indicating an end of packet
s_axis_tuser	In	1	 AXI4-Stream User Sideband Interface from XGMAC 1 indicates that a good packet has been received. 0 indicates that a bad packet has been received.

Triple Rate SDI Interface

See the *LogiCORE IP Virtex-6 FPGA Triple-Rate SDI User Guide* (UG823) for more information.

Table 2-8: Triple Rate SDI Interface Signals

Signal Name	Direction	Width	Description
tx_rst	In	1	Reset.
tx_clk	In	1	Clock input. It must have a frequency of 74.25 MHz or 74.25/ 1.001 MHz for HD-SDI, 148.5 MHz or 148.5/1.001 MHz for 3G-SDI, and 148.5 MHz for SD-SDI mode.
tx_ce	Out	3	To tx_ce of Triple-Rate SDI
tx_din_rdy	Out	1	To tx_din_rdy of Triple-Rate SDI
tx_ds1a	Out	10	To tx_ds1a of Triple-Rate SDI
tx_ds1b	Out	10	To tx_ds1b of Triple-Rate SDI
tx_ds2a	Out	10	To tx_ds2a of Triple-Rate SDI
tx_ds2b	Out	10	To tx_ds2b of Triple-Rate SDI
tx_level_b_3g	Out	1	To tx_level_b_3g of Triple-Rate SDI

Table 2-8: Triple Rate SDI Interface Signals (Cont'd)

Signal Name	Direction	Width	Description	
tx_mode	Out	1	To tx_mode of Triple-Rate SDI	
tx_m	Out	1	In HD-SDI and 3G-SDI modes, this output indicates which bit rate is received. If this output is Low, it indicates a bit rate of 1.485 Gb/s in HD-SDI mode and 2.97 Gb/s in 3G-SDI mode. If this output is High, it indicates a bit rate of 1.485/1.001 Gb/s in HD-SDI mode and 2.97/1.001 Gb/s in 3G-SDI mode.	

Ethernet Packets Received Interface

See the SMPTE 2022-5/6 reference design for more information.

Table 2-9: Ethernet Packets Received Interface Signals

Signal Name	Direction	Width Description	
rx_rtp_pkt_recv	Out	1	Pulse indicating receiving of RTP packets
rx_rtp_seq_num	Out	16	Sequence number of RTP packet received
rx_rtp_pkt_buffered	Out	16	Amount of RTP packets buffered
rx_rtp_pkt_transmit	Out	1	Pulse indicating consumption of RTP packet for SDI output

AXI4-Lite Control Interface

The AXI4-Lite interface allows you to dynamically control parameters within the core. Core configuration can be accomplished using an embedded ARM® or soft system processor such as MicroBlaze™.

The core can be controlled through the AXI4-Lite interface using read and write transactions to the SMPTE2022-5/6 Video over IP Receiver register space.

The AXI4-Lite slave interface facilitates integrating the core into a processor system, or along with other video or AXI4-Lite compliant IP, connected through the AXI4-Lite interface to an AXI4-Lite master. See the *LogiCORE IP AXI Interconnect* (DS768) for more information.

Table 2-10: AXI4-Lite Interface Signals

Signal Name	Direction	Width	Description	
s_axi_aclk	In	1	AXI4-Lite clock	
s_axi_aresetn	In	1	AXI4-Lite active-Low reset	
s_axi_awaddr	In	9	AXI4-Lite Write Address Bus	
s_axi_awvalid	In	1	AXI4-Lite Write Address Channel Write Address Valid	

Table 2-10: AXI4-Lite Interface Signals (Cont'd)

Signal Name	Direction	Width	Description
s_axi_wdata	In	32	AXI4-Lite Write Data Bus
s_axi_wstrb	In	4	AXI4-Lite Write Data Channel Data Byte Strobes
s_axi_wvalid	In	1	AXI4-Lite Write Data Channel Write Data Valid
s_axi_bready	In	1	AXI4-Lite Write Response Channel Ready. Indicates target is ready to receive response.
s_axi_araddr	In	9	AXI4-Lite Read Address Bus
s_axi_arvalid	In	1	AXI4-Lite Read Address Channel Read Address Valid
s_axi_rready	In	1	AXI4-Lite Read Data Channel Read Data Ready. Indicates target is ready to accept the read data.
s_axi_arready	Out	1	AXI4-Lite Read Address Channel Read Address Ready. Indicates target is ready to accept the read address.
s_axi_rdata	Out	32	AXI4-Lite Read Data Bus
s_axi_rresp	Out	2	AXI4-Lite Read Response Channel Response. Indicates results of the read transfer.
s_axi_rvalid	Out	1	AXI4-Lite Read Data Channel Read Data Valid
s_axi_wready	Out	1	AXI4-Lite Write Data Channel Write Data Ready. Indicates target is ready to accept the write data.
s_axi_bresp	Out	2	AXI4-Lite Write Response Channel. Indicates results of the write transfer.
s_axi_bvalid	Out	1	AXI4-Lite Write Response Channel Response Valid. Indicates response is valid.
s_axi_awready	Out	1	AXI4-Lite Write Address Channel Write Address Ready.

Register Space

The SMPTE2022-5/6 Video over IP Receiver register space is partitioned to General and Channel specific registers. See the SMPTE 2022-5/6 reference design for more information on register usage.

Table 2-11: AXI4-Lite Register Map

Address Default						
Address (hex)	Register Name	Access Type	Default Value	Register Description		
	General Registers					
0x000	CONTROL	R/W	0	Bit 0: Reserved Bit 1: Register update Bit 31-2: Reserved		
0x004	RESET	R/W	0	Bit 0: Soft reset Bit 31-1: Reserved		
0x030	CHANNEL	R/W	0	Bit 31-0: Access channel		
0x03C	VERSION	R	0x0100 0000	Bit 7-0: Revision number Bit 11-8: Patch ID Bit 15-12: Version revision Bit 23-16: Version minor Bit 31-24: Version major		
0x060	MAC_LOW _ADDR	R/W	0	Bit 31-0: Media Access Controller (MAC) address [31:0]		
0x064	MAC_HIGH _ADDR	R/W	0	Bit 15-0: MAC address [47:32] Bit 31-16: Reserved		
0x068	IP_HOST_ADDR	R/W	0	Bit 31-0: IP address		
0x0A0	NUM_CHAN	R	0	Bit 10-0: Number of channels Bit 31-11: Reserved		
		Channe	l Registers			
0x100	CHAN_EN	R/W	0	Bit 0: Channel Enable Bit 31-1: Reserved		
0x110	FIREWALL_SEL	R/W	0	Bit 1- 0: Select which firewall parameters to be used to filter the Ethernet packets. "00"- dest_port, "01"- dest_port and src_ip, "10"- dest_port and ssrc, "11"-dest_port, src_ip and ssrc" Bit 31-2: Reserved		
0x114	DEST_PORT	R/W	0	Bit 15-0: UDP destination port Bit 31-16: Reserved		
0x118	SSRC	R/W	0	Bit 31-0: Synchronization Source (SSRC) value		
0x11C	SRC_IP_HOST_ADDR	R/W	0	Bit 31-0: Source IP address		
0x12C	START_BUFFER_SIZE	R/W	0	Bit 31-0: The number of RTP packets to buffer before starting SDI output		
0x144	VID_SRC_FMT	R	0	Bit 31-0: Video source format value		
0x148	VID_LOCK_PARAM	R	0	Bit 0: Video locked Bit 31-1: Reserved		

Table 2-11: AXI4-Lite Register Map (Cont'd)

Address (hex)	Register Name	Access Type	Default Value	Register Description
0x154	FEC_L	R	0	Bit 9:0: L value Bit 31-10: Reserved
0x158	FEC_D	R	0	Bit 9:0: D value Bit 31-10: Reserved
0x15C	FEC_LOCK_PARAM	R	0	Bit 0: FEC locked Bit 1: FEC protect level Bit 31-2: Reserved
0x160	PACKETS_BUFFERED	R	0	Bit 15-0: Number of RTP packets buffered
0x180	SDI_STATUS	R	0	Bit 0: Frame error Bit 31-1: Reserved

CONTROL (0x000) Register

Bit 1 of the CONTROL register is a write-done semaphore for the host processor, which facilitates committing all user register updates in the channel space simultaneously. One set of registers (the processor registers) is directly accessed by the processor interface, while the other set (the active set) is actively used by the core. New values written to the processor registers are copied over to the active set if and only if the register update bit is set. Setting the bit to 0 before updating multiple registers and then setting the bit to 1 when updates are completed ensures all channel space registers are updated simultaneously.

RESET (0x004) Register

Bit 0 facilitates software reset. When '1' all registers and the core is held at reset.

CHANNEL (0x030) Register

Set the channel's registers to access. All the channels share the same set of register address in the channel space.

CHAN_EN (0x100) Register

Enable the channel to work by setting to '1'.

FIREWALL_SEL (0x110) Register

Configures the channel to filter the Ethernet packets based on either destination port, SSRC value and source IP address.

START_BUFFER_SIZE (0x12C) Register

Configures the latency of the output SDI based on the number of RTP packets to accumulate before starting.

VID_SRC_FMT (0x154) Register

The VID_SRC_FMT register is the video source format value of the SDI video. It is valid when Video locked is '1'.

FEC_L (0x154) Register

The FEC_L register is the L value of FEC matrix. It is valid when FEC locked is '1'.

FEC_D (0x158) Register

The FEC_D register is the D value of FEC matrix. It is valid when FEC locked is '1'.

SDI_STATUS (0x158) Register

Reset the core when frame error is '1'.

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface

The core is configured to meet the developer's specific needs through the CORE Generator™ Graphical User Interface (GUI). This section provides a quick reference to parameters that can be configured at generation time.

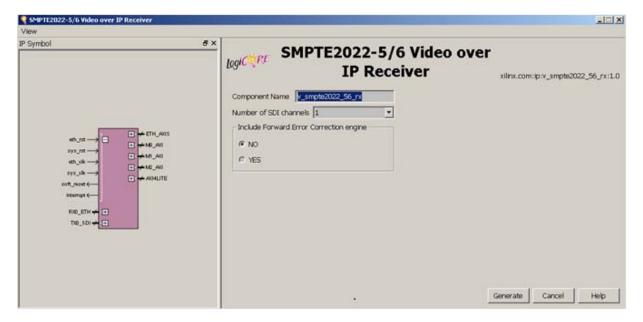


Figure 3-1: Main GUI

The GUI displays a representation of the IP symbol on the left side, and the parameter assignments on the right side, which are described as follows:

- Component Name: The component name is used as the base name of output files generated for the module. Names must begin with a letter and must be composed from characters: a to z, 0 to 9 and "_". The name v_smpte2022_56_rx_v1_0 cannot be used as a component name.
- Number of SDI Channels: Select the number of SDI channels
- Include Forward Error Correction engine: When **Yes** is selected, SMPTE 2022-5 Forward Error Correction engine is generated in the core. The core will be capable of recovering IP packets lost to network transmission errors.

Output Generation

Table 3-1: File Details

Name	Description
<component_name>_readme.txt</component_name>	Readme file for the core
<component_name>.ngc</component_name>	The netlist for the core
<component_name>.vho</component_name>	The HDL template for instantiating the core
<component_name>.vhd</component_name>	The structural simulation model for the core. It is used for functionally simulating the core.
<component_name>.xco</component_name>	Log file from CORE Generator tool describing which options were used to generate the core. An XCO file can also be used as an input to the CORE Generator tool.
<component_name>_flist.txt</component_name>	A text file listing all of the output files produced when the customized core was generated in the CORE Generator tool.
<component_name>.asy</component_name>	IP symbol file.
<pre><component_name>.gise <component_name>.xise</component_name></component_name></pre>	ISE® design tools subproject files for use when including the core in ISE designs.

Designing with the Core

The core is for broadcast applications that require bridging between SMPTE video connectivity standards SD/HD/3G-SDI and 10Gb/s Ethernet. The core takes in Ethernet packets encapsulated in accordance with SMPTE2022-5/6 and maps them in uncompressed SD/HD/3G-SDI streams to the Triple-Rate SDI core. It receives Ethernet packets through the AXI4-Stream interface from the 10 Gb/s Ethernet MAC. The core uses the AXI4 memory interface to transfer data between the core and external DDR memory. The register control interface is compliant with AXI4-Lite interface. See the SMPTE 2022-5/6 reference design for more information.

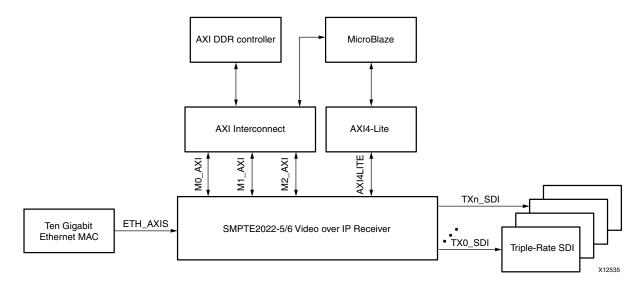


Figure 4-1: SMPTE2022-5/6 Video over IP Receiver System Built with other Xilinx IP Cores

Constraining the Core

Required Constraints

There are no required constraints for this core.

Device, Package, and Speed Grade Selections

There are no device, package or speed grade requirements for this core. This core has not been characterized for use in low-power devices.

Clock Frequencies

See Maximum Frequencies in Chapter 2.

Clock Management

This core has three clock domains.

- · SDI clock domain
- · System clock domain recommended running at 200 MHz
- Ethernet clock domain at 156.25 MHz.

Clock Placement

There are no specific clock placement requirements for this core.