mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EFM32HG108 DATASHEET

F64/F32

- ARM Cortex-M0+ CPU platform
 High Performance 32-bit processor @ up to 25 MHz
 - Wake-up Interrupt Controller
- Flexible Energy Management System
- 20 nA @ 3 V Shutoff Mode
- 0.6 μA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
- 0.9 μA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
- 51 µA/MHz @ 3 V Sleep Mode
- 127 µA/MHz @ 3 V Run Mode, with code executed from flash
- 64/32 KB Flash
- 8/4 KB RAM
- 17 General Purpose I/O pins
- Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- 11 asynchronous external interrupts
- Output state retention and wake-up from Shutoff Mode
- 6 Channel DMA Controller
- 6 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Timers/Counters
- 3× 16-bit Timer/Counter
- 3×3 Compare/Capture/PWM channels
- Dead-Time Insertion on TIMER0
- 1× 24-bit Real-Time Counter
- 1× 16-bit Pulse Counter
- Watchdog Timer with dedicated RC oscillator @ 50 nA

- Communication interfaces
 - 2× Universal Synchronous/Asynchronous Receiver/Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Triple buffered full/half-duplex operation
 - Low Energy UART
 - Autonomous operation with DMA in Deep Sleep
 Mode
 - I²C Interface with SMBus support
 - · Address recognition in Stop Mode
- · Ultra low power precision analog peripherals
 - 1× Analog Comparator
 - · Capacitive sensing with up to 2 inputs
 - Supply Voltage Comparator
- · Ultra efficient Power-on Reset and Brown-Out Detec-
- Debug Interface

tor

- 2-pin Serial Wire Debug interface
- Micro Trace Buffer (MTB)
- Pre-Programmed UART Bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.98 to 3.8 V
- QFN24 package

- 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:
- Energy, gas, water and smart metering
- Health and fitness applications
- Alarm and security systems
- Industrial and home automation

Smart accessories

1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32HG108 devices.

Table 1.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (°C)	Package
EFM32HG108F32G-B-QFN24	32	4	25	1.98 - 3.8	-40 - 85	QFN24
EFM32HG108F64G-B-QFN24	64	8	25	1.98 - 3.8	-40 - 85	QFN24

Adding the suffix 'R' to the part number (e.g. EFM32HG108F32G-B-QFN24R) denotes tape and reel.


Visit www.silabs.com for information on global distributors and representatives.

2 System Summary

2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32HG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32HG108 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the *EFM32HG Reference Manual*.

A block diagram of the EFM32HG108 is shown in Figure 2.1 (p. 3).

Figure 2.1. Block Diagram

2.1.1 ARM Cortex-M0+ Core

The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in *ARM Cortex-M0+ Devices Generic User Guide*.

2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface and a Micro Trace Buffer (MTB) for data/instruction tracing.

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32HG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits.

There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32HG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32HG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 Inter-Integrated Circuit Interface (I2C)

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.

2.1.12 Pre-Programmed UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

2.1.14 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

2.1.15 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

2.1.16 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

2.1.17 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.18 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

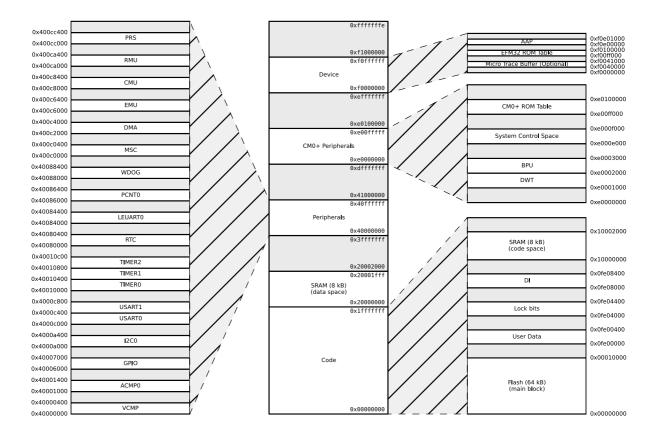
2.1.19 General Purpose Input/Output (GPIO)

In the EFM32HG108, there are 17 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 11 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

2.2 Configuration Summary

The features of the EFM32HG108 is a subset of the feature set described in the EFM32HG Reference Manual. Table 2.1 (p. 6) describes device specific implementation of the features.

Table 2.1. Configuration Summary


Module	Configuration	Pin Connections
Cortex-M0+	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO,
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
12C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA and I2S	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S and IrDA	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
VCMP	Full configuration	NA
GPIO	17 pins	Available pins are shown in Table 4.3 (p. 41)

2.3 Memory Map

The *EFM32HG108* memory map is shown in Figure 2.2 (p. 7), with RAM and Flash sizes for the largest memory configuration.

Figure 2.2. EFM32HG108 Memory Map with largest RAM and Flash sizes

3 Electrical Characteristics

3.1 Test Conditions

3.1.1 Typical Values

The typical data are based on T_{AMB} =25°C and V_{DD} =3.0 V, as defined in Table 3.2 (p. 8), unless otherwise specified.

3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), unless otherwise specified.

3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8).

Table 3.1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
T _{STG}	Storage tempera- ture range		-40		150 ¹	°C
T _S	Maximum soldering temperature	Latest IPC/JEDEC J-STD-020 Standard			260	°C
V _{DDMAX}	External main sup- ply voltage		0		3.8	V
VIOPIN	Voltage on any I/O pin		-0.3		V _{DD} +0.3	V

¹Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

3.3 General Operating Conditions

3.3.1 General Operating Conditions

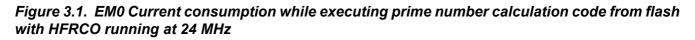
Table 3.2. General Operating Conditions

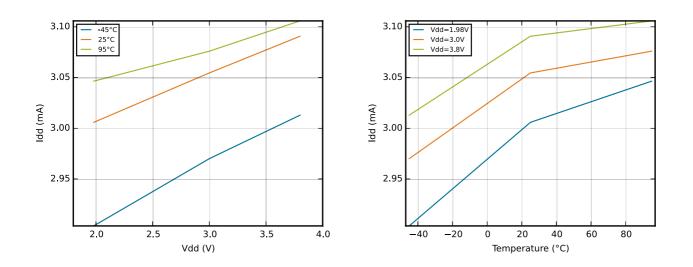
Symbol	Parameter	Min	Тур	Мах	Unit
T _{AMB}	Ambient temperature range	-40		85	°C
V _{DDOP}	Operating supply voltage	1.98		3.8	V
f _{APB}	Internal APB clock frequency			25	MHz
f _{AHB}	Internal AHB clock frequency			25	MHz

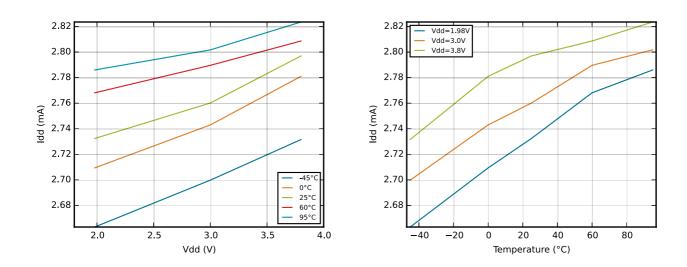
3.4 Current Consumption

Table 3.3. Current Consumption

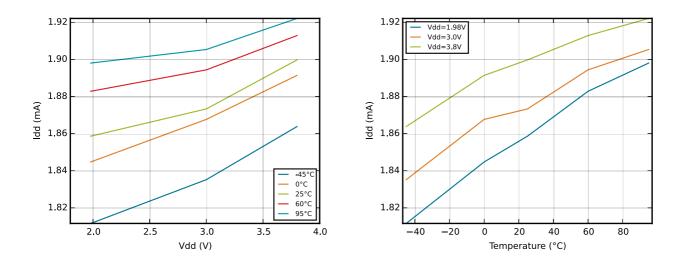
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		148	158	μΑ/ MHz
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		153	163	μΑ/ MHz
		24 MHz USHFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		161	172	μΑ/ MHz
		24 MHz USHFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		163	174	μΑ/ MHz
		24 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		127	137	μΑ/ MHz
		24 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		129	139	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		131	140	μΑ/ MHz
	EM0 current. No prescaling. Running prime number cal-	21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		134	143	μΑ/ MHz
I _{EM0}	culation code from Flash.	14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		134	143	μΑ/ MHz
		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		137	145	μΑ/ MHz
		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		136	144	μΑ/ MHz
		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		139	148	μΑ/ MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		142	150	μΑ/ MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		146	154	μΑ/ MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		184	196	μΑ/ MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		194	208	μΑ/ MHz

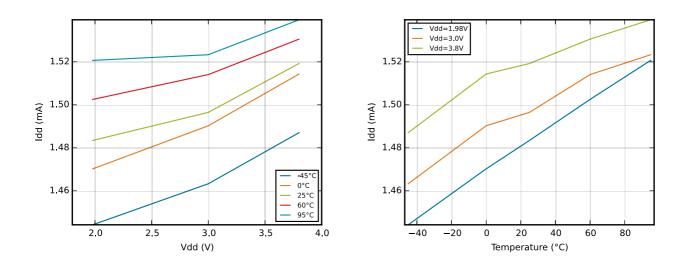



Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		64	68	μΑ/ MHz
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		67	71	μΑ/ MHz
		24 MHz USHFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		85	91	μΑ/ MHz
		24 MHz USHFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		86	92	μΑ/ MHz
		24 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		51	55	μΑ/ MHz
		24 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		52	56	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		53	57	µA/ MHz
	EM1 current	21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		54	58	μΑ/ MHz
I _{EM1}		14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		56	59	µA/ MHz
		14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		57	61	μΑ/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		58	61	μΑ/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		59	63	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		64	68	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		67	71	µA/ MHz
		1.2 MHz HFRCO. all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		106	114	μΑ/ MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		114	126	μΑ/ MHz
I _{EM2}	EM2 current	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V_{DD} = 3.0 V, T_{AMB} =25°C		0.9	1.35	μΑ


Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V_{DD} = 3.0 V, T_{AMB} =85°C		1.6	3.50	μA
	EM2 ourropt	EM3 current (ULFRCO en- abled, LFRCO/LFXO disabled), V _{DD} = 3.0 V, T _{AMB} =25°C		0.6	0.90	μA
IEM3	EM3 current	EM3 current (ULFRCO en- abled, LFRCO/LFXO disabled), V _{DD} = 3.0 V, T _{AMB} =85°C		1.2	2.65	μA
	EM4 current	V _{DD} = 3.0 V, T _{AMB} =25°C		0.02	0.035	μA
IEM4		V _{DD} = 3.0 V, T _{AMB} =85°C		0.18	0.480	μA

3.4.1 EM0 Current Consumption




Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

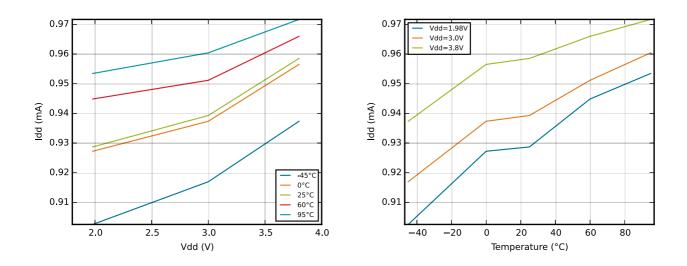

Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz

Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz

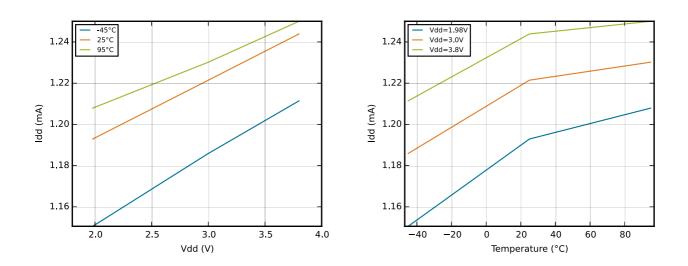
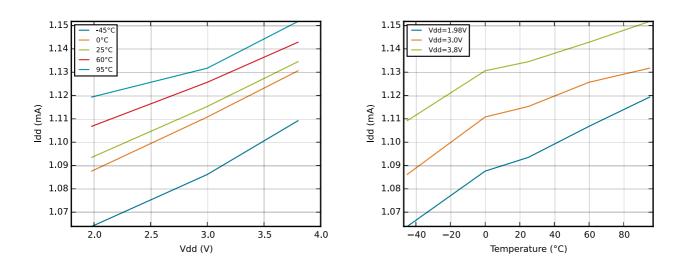
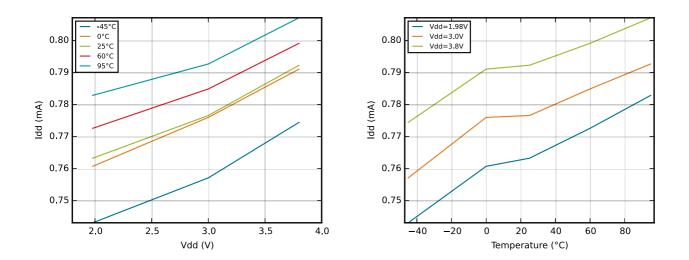
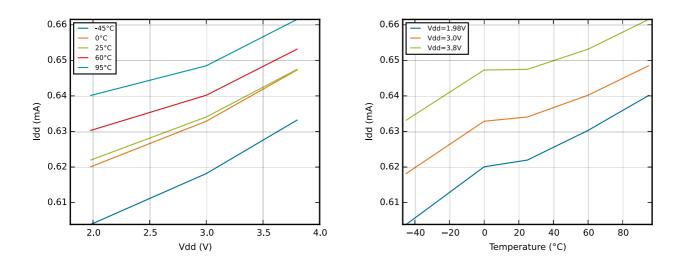


Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6 MHz



3.4.2 EM1 Current Consumption


Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz


Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz

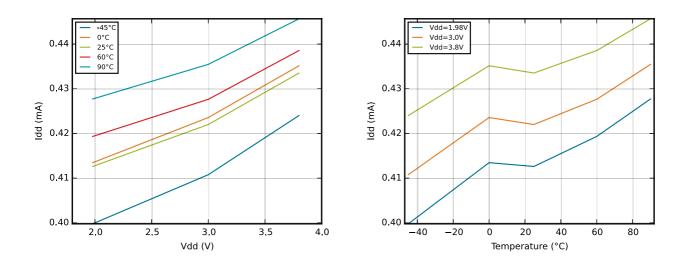
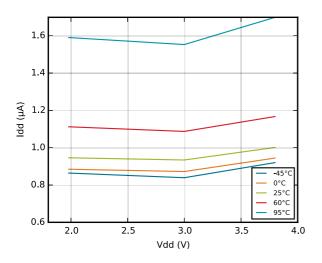
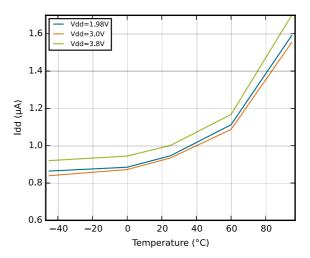
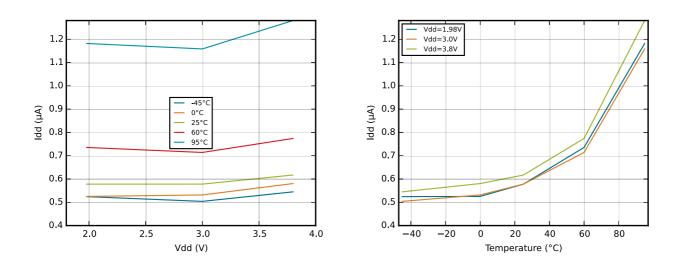

Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz

Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz




Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz

3.4.3 EM2 Current Consumption


Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.

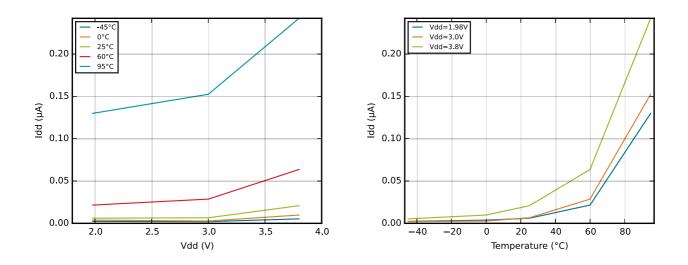

3.4.4 EM3 Current Consumption

Figure 3.12. EM3 current consumption.

3.4.5 EM4 Current Consumption

Figure 3.13. EM4 current consumption.

3.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 3.4. Energy Modes Transitions

Symbol	Parameter	Min	Тур	Мах	Unit
t _{EM10}	Transition time from EM1 to EM0		0		HF- CORE- CLK cycles
t _{EM20}	Transition time from EM2 to EM0		2		μs
t _{EM30}	Transition time from EM3 to EM0		2		μs
t _{EM40}	Transition time from EM4 to EM0		163		μs

3.6 Power Management

The EFM32HG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".

Table 3.5. Power Management

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
M	BOD threshold on	EMO	1.74		1.96	V
V _{BODextthr-}	falling external sup- ply voltage	EM2	1.71	1.86	1.98	V
V _{BODextthr+}	BOD threshold on rising external sup- ply voltage			1.85		V
t _{reset}	Delay from reset is released until program execution starts	Applies to Power-on Reset, Brown-out Reset and pin reset.		163		μs
C _{DECOUPLE}	Voltage regulator decoupling capaci- tor.	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND		1		μF

3.7 Flash

Table 3.6. Flash

Symbol	Parameter	Condition	Min	Тур	Max	Unit
EC _{FLASH}	Flash erase cycles before failure		20000			cycles
		T _{AMB} <150°C	10000			h
RET _{FLASH}	Flash data retention	T _{AMB} <85°C	10			years
		T _{AMB} <70°C	20			years
t _{w_PROG}	Word (32-bit) pro- gramming time		20			μs
t _{P_ERASE}	Page erase time		20	20.4	20.8	ms
t _{D_ERASE}	Device erase time		40	40.8	41.6	ms
I _{ERASE}	Erase current				7 ¹	mA
I _{WRITE}	Write current				7 ¹	mA
V _{FLASH}	Supply voltage dur- ing flash erase and write		1.98		3.8	V

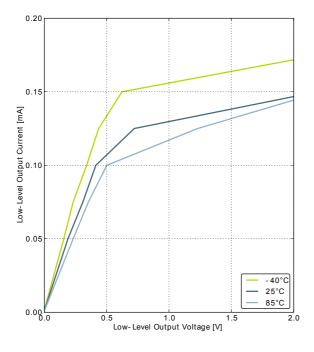
¹Measured at 25°C

3.8 General Purpose Input Output

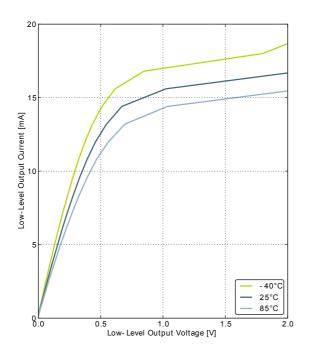
Table 3.7. GPIO

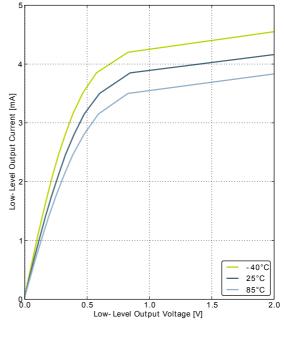
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{IOIL}	Input low voltage				0.30V _{DD}	V
V _{IOIH}	Input high voltage		0.70V _{DD}			V
	Output high volt- age (Production test	Sourcing 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.80V _{DD}		V
V _{IOOH}	condition = 3.0V, DRIVEMODE = STANDARD)	Sourcing 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.90V _{DD}		V

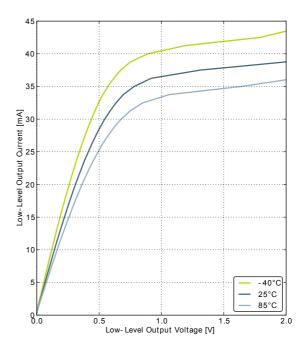
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		Sourcing 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.85V _{DD}		V
		Sourcing 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.90V _{DD}		V
		Sourcing 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.75V _{DD}			V
		Sourcing 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.85V _{DD}			V
		Sourcing 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.60V _{DD}			V
		Sourcing 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.80V _{DD}			V
		Sinking 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.20V _{DD}		V
		Sinking 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.10V _{DD}		V
	Output low voltage (Production test	Sinking 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.10V _{DD}		V
N/		Sinking 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.05V _{DD}		V
V _{IOOL}	condition = 3.0V, DRIVEMODE = STANDARD)	Sinking 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD			0.30V _{DD}	V
		Sinking 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD			0.20V _{DD}	V
		Sinking 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH			0.35V _{DD}	V
		Sinking 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH			0.25V _{DD}	V
I _{IOLEAK}	Input leakage cur- rent	High Impedance IO connected to GROUND or Vdd		±0.1	±40	nA
R _{PU}	I/O pin pull-up resis- tor			40		kOhm
R _{PD}	I/O pin pull-down re- sistor			40		kOhm
R _{IOESD}	Internal ESD series resistor			200		Ohm
t _{IOGLITCH}	Pulse width of puls- es to be removed		10		50	ns



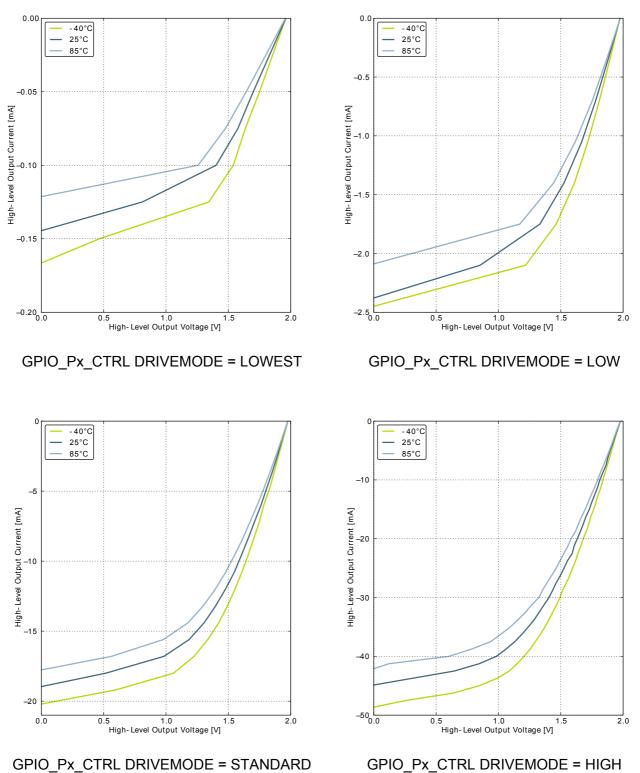
...the world's most energy friendly microcontrollers


Symbol	Parameter	Condition	Min	Тур	Max	Unit
	by the glitch sup- pression filter					
t _{IOOF}	Output fall time	GPIO_Px_CTRL DRIVEMODE = LOWEST and load capaci- tance C_L =12.5-25pF.	20+0.1C _L		250	ns
		GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance C _L =350-600pF	20+0.1C _L		250	ns
V _{IOHYST}	I/O pin hysteresis (V _{IOTHR+} - V _{IOTHR-})	V _{DD} = 1.98 - 3.8 V	0.1V _{DD}			V

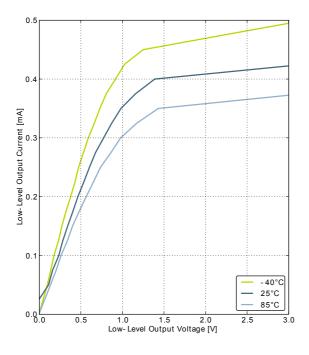

Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage

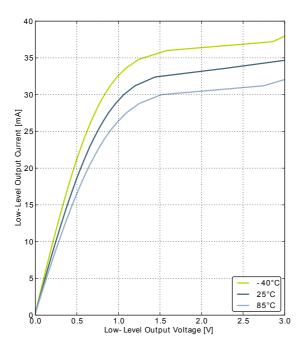

GPIO_Px_CTRL DRIVEMODE = LOWEST

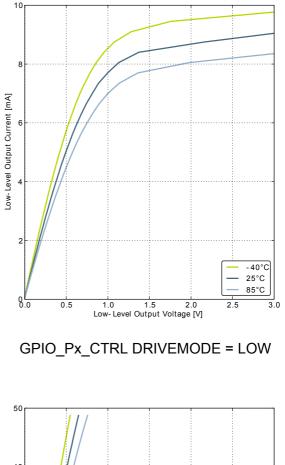
GPIO_Px_CTRL DRIVEMODE = STANDARD

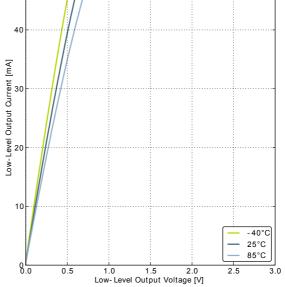

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH


Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage

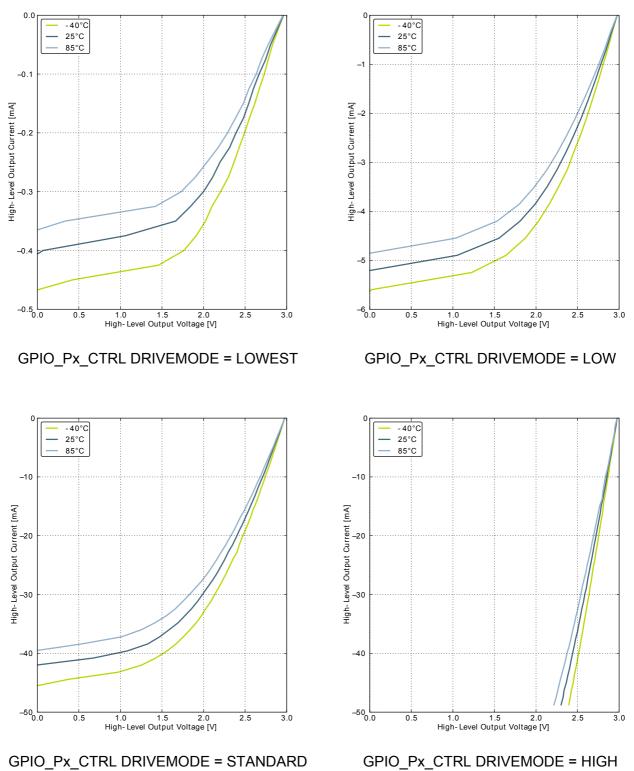

GPIO_Px_CTRL DRIVEMODE = STANDARD


Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage

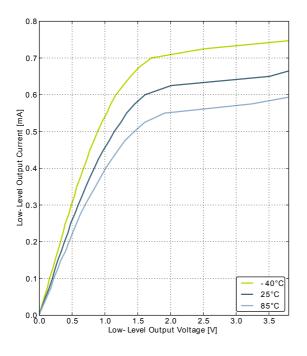


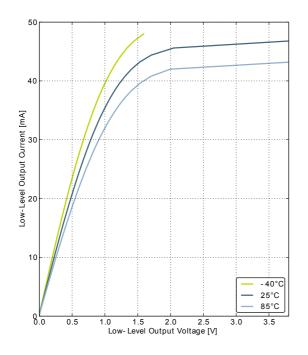
GPIO_Px_CTRL DRIVEMODE = LOWEST

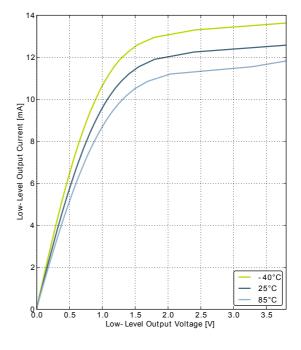
GPIO_Px_CTRL DRIVEMODE = STANDARD

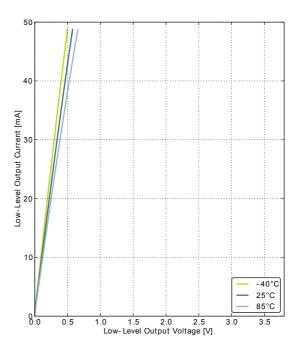


GPIO_Px_CTRL DRIVEMODE = HIGH


Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = STANDARD


Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH