: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Balun

We accomplish the advanced characteristics of Low Insertion Loss and High Isolation, the Miniaturization and High Performance by our μ-wave circuit simulation and fine line printing technologies.

Features

- Ultra miniaturized, thin type ($1.6 \times 0.8 \times \mathrm{t} 0.55$)
- Available for each frequency range
(100 MHz to 4000 MHz)
- Balanced / Unbalanced Converter
- Impedance matching ($50 \Omega / 200 \Omega, 50 \Omega / 100 \Omega$)

Recommended Applications

- Digital portable telephone
- Dual mode portable telephone
- Personal handy-phone system
- Mobile communication system

■ Block Diagram

- Typical Characteristics

■ Dimensions in mm (not to scale)
※1

- An Equivalent Circuit

Fig. 2

Fig. 3

Fig. 4

Part No. Items	$\begin{aligned} & \text { EHFFD } \\ & 1750 \mathrm{~A} \end{aligned}$	$\begin{gathered} \text { EHFFD } \\ 1622 \end{gathered}$	$\begin{gathered} \text { EHFFD } \\ 1620 \end{gathered}$	$\begin{array}{\|c} \text { EHFFD } \\ 1629 \end{array}$	$\begin{gathered} \text { EHFFD } \\ 1624 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \text { EHFFD } \\ & \text { 1624D } \end{aligned}$	$\begin{gathered} \text { EHFFD } \\ 1624 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { EHFFD } \\ 1615 \end{array}$	$\begin{gathered} \text { EHFFD } \\ 1621 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { EHFFD } \\ 1626 \end{array}$	$\begin{gathered} \text { EHFFD } \\ 1618 \end{gathered}$	$\begin{gathered} \text { EHFFD } \\ 1619 \end{gathered}$	$\begin{gathered} \text { EHFFD } \\ 1627 \end{gathered}$	$\begin{gathered} \text { EHFFD } \\ 1631 \end{gathered}$
Frequency (MHz)	$\left.\begin{array}{\|r\|} 1700 \text { to } \\ 1950 \end{array} \right\rvert\,$	$\begin{array}{r} 700 \text { to } \\ 900 \end{array}$	$\begin{gathered} 900 \text { to } \\ 1350 \end{gathered}$	$\begin{array}{\|r\|} 1550 \text { to } \\ 2000 \end{array}$	$\left.\begin{array}{\|r\|} 1600 \text { to } \\ 1950 \end{array} \right\rvert\,$	$\begin{array}{\|r\|} 1800 \text { to } \\ 2000 \\ \hline \end{array}$	$\begin{array}{r} 3400 \text { to } \\ 4000 \end{array}$	$\left.\begin{array}{\|c\|} 670 \text { to } \\ 900 \end{array} \right\rvert\,$	$\begin{array}{r} 1100 \text { to } \\ 1450 \\ \hline \end{array}$	$\left.\begin{array}{\|r\|} 1600 \text { to } \\ 1800 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 700 \text { to } \\ 1300 \end{array}$	$\begin{array}{r} 1200 \text { to } \\ 2200 \end{array}$	15466101621 1806 to 1990	1805 to 1880 1930 to 1990
Insertion Loss (dB)	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	0.8 max	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	1.0 max.	$\begin{gathered} 2.0 \\ \max . \end{gathered}$	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	1.0 max.	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	1.0 max	1.0 max.	$\begin{gathered} 1.0 \\ \max . \end{gathered}$	$\begin{gathered} 1.0 \\ \max . \end{gathered}$
Difterence of Phaseddeg)	180 ± 15	180 ± 15	180 ± 15	180 ± 10	180 ± 15	180 ± 20								
Impedance (Ω)	50/200	50/200	50/200	50/50	50/200	50/200	50/200	50/200	50/200	50/200	50/50	50/50	50/50	50/50
Circuit Diagram	Fig. 1	Fig. 1	Fig. 1	Fig. 2	Fig. 1	Fig. 2	Fig. 2	Fig. 3	Fig. 4					
Size (mm)	1.6×0.8	1.6×1.6	1.6×1.6	1.6×1.6	1.6×1.6	1.6×1.6	1.6×1.6	3.2X1.6	3.2×1.6	3.2X1.6	3.2×1.6	3.2×1.6	3.2X1.6	3.2×1.6
Construction No.	※1	※2	※2	※2	※2	※2	※2	※3	※3	※3	※3	※3	※3	
Note														Dual

