imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAX 10 FPGA 10M50 Evaluation Kit User Guide

UG-20006 2016.02.29

101 Innovation Drive San Jose, CA 95134 www.altera.com

Contents

MAX 10 FPGA 10M50 Evaluation Kit Overview	1-1
Board Component Blocks	
Supported Items Not Included with the Kit	
	2.1
Getting Started	
Powering the Kit	
Installing the USB-Blaster Driver	
Handling the Kit	
Factory Default Switch and Jumper Settings	2-2
Board Components	3-1
Board Overview	
Featured Device: MAX 10 FPGA	
Configuration	
Using the Quartus II Programmer	
Selecting the Internal Configuration Scheme	
Status Elements	
Setup Elements	
General User Input/Output	
Clock Circuitry.	
On-Board Oscillators	
Off-Board Clock Input/Output	
Clock Control GUI	
Components and Interfaces	
HDMI Video Output	
Pmod Connectors	
Memory	
Flash	
MIPI CSI-2 Transmitter	
MIPI CSI-2 Receiver	
Power Supply	

Document Revision History	A-1
Compliance & Conformity Statements	
CE EMI Conformity Caution	

MAX 10 FPGA 10M50 Evaluation Kit Overview

2016.02.29		
UG-20006	Subscribe Send Feedback	

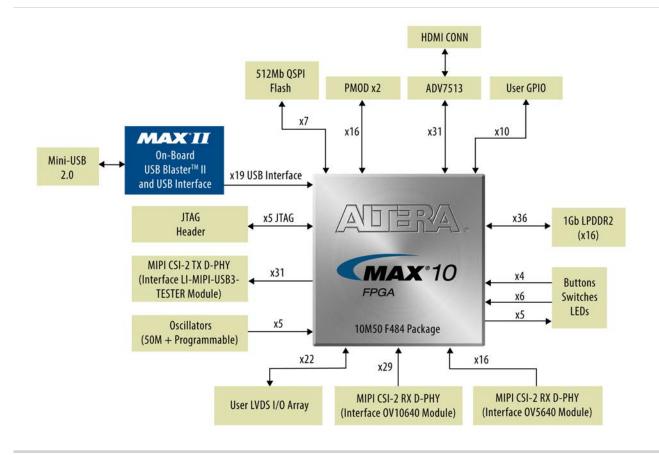
The MAX[®] 10 Evaluation Kit (P/N : EK-10M50F484) provides an easy-to-use platform for evaluating the MAX 10 FPGA technology and Enpirion[®] PowerSoC regulators. You can use this kit to do the following:

- Develop designs for the 10M50, F484 package FPGA
- Validate MIPI CSI-2 passive solution for both MIPI transmitter and receiver
- Demonstrate video applications together with HDMI
- Interface MAX 10 FPGAs to LPDDR2 memory at 200 MHz performance
- Interface to daughter cards and peripherals using Digilent Pmod[™] Compatible connectors
- Bridge to external devices through single-ended and LVDS through-hole vias
- Measure FPGA power (VCC_CORE)
- Reuse the kit's PCB board and schematic as a model for your design

Board Component Blocks

The MAX 10 FPGA 10M50 Evaluation Kit features the following major component blocks. For a detailed description of the board components, see "Board Components" section on Page 3-1.

- Featured Devices
 - MAX 10 FPGA 10M50D, dual supply, F484 package (P/N: 10M50DAF484C6GES)
 - MAX II CPLD EPM1270M256C4N (On-board USB Blaster II)
 - Enpirion EP5348UI 400mA PowerSoC Synchronous Buck Regulator with Integrated Inductor
 - Enpirion EP5358xUI 600mA PowerSoC DC-DC Step-Down Converters with Integrated Inductor
 - Enpirion EN5329QI/EN5339QI 2A/3A PowerSoC Low Profile Synchronous Buck DC-DC Converter with Integrated Inductor
- FPGA configuration
 - Embedded USB-Blaster II (JTAG)
 - Optional JTAG direct via 10-pin header
- On Board clocking circuitry
 - 25 MHz single-ended, external oscillator clock source
 - Silicon Labs Si510 crystal oscillator
 - Silicon Labs Si5338 clock generator with programmable frequency GUI
- Memory devices
 - 64M x 16 1Gbits LPDDR2 with soft memory controller
 - 512Mbits Quad Serial Peripheral Interface (Quad SPI) Flash


^{© 2016} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

1-2 Board Component Blocks

- Communication Ports
 - One HDMI video output
 - Two 12-pin Pmod connectors
 - Two 36-pin MIPI FFC connectors and one 16-pin MIPI FFC connector
- General User I/O
 - General-purpose single-ended through-hole vias (2x5)
 - General-purpose LVDS through-hole vias (2 x 9 LVDS pairs, plus two clock pairs)
 - 5 Green User-defined LEDs
 - 4 User-defined push buttons
 - User DIP Switches (SW1, SW2.1, SW2.2)
- Power
 - Yellow Power-ON LEDs (D9, D10, D11)
 - USB Y cable (USB Type-A to mini Type-B) for both on-board USB-Blaster II and 5V/1A power capability
 - Support DC power adapter option, but 5V power supply and cord are not included in the kit
- Software
 - Free Quartus[®] Prime Lite Edition design software (download software and license from http:// www.altera.com/download)
- Complete documentation
 - User Guide, bill of material, schematic and board files

Send Feedback

Figure 1-1: MAX 10 10M50 FPGA Evaluation Kit Block Diagram

Related Information Board Components on page 3-1

Supported Items Not Included with the Kit

The following items are not included in the kit but were designed to be used in conjunction with this kit. All of these items are sold separately.

Table 1-1: Additional Components Not Included with the Kit

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
J1, J2	Cable Flat Flex Top / Top 36 POS 0.5 MM pitch	Parlex Molex Leopard Imaging	050R36-76B 0210200385 LI-FLEX03	www.parlex.com www.molex.com www.leopardi- maging.com

Board	Description	Manufacturer	Manufacturing	Manufacturer Website
Reference		Manufacturer	Part Number	
J3	Cable Flat Flex Top/	Wurth Electronics	687716152002	www.we-online.com
	Bottom 16 POS 0.5 MM 6inches	Molex	02010200171	www.molex.com
J12, J13	2x10 0.1-inch headers (for LVDS GPIO)	Wurth Electronics	61302021121	www.we-online.com
J14	2x7 0.1-inch headers (for GPIO)	Wurth Electronics	61301421121	www.we-online.com
J5	USB-Blaster Download Cable	Altera	PL-USB- BLASTER-RCN	https://www.altera.com/ products/boards_and_ kits/download- cables.html
J5	USB-Blaster II Download Cable	Altera	PL-USB2- BLASTER	https://www.altera.com/ products/boards_and_ kits/download- cables.html
J10	Standard 5V, 2.0A Switching Power Adapter	LI Tone Electronics	LTE12E-S1-316	www.lte.com.tw
J10	Standard 5V, 3.0A Switching Power Adapter	Huntkey	HKA08105030- 8B	http:// dealer.huntkey.com/en/
J1	LI-MIPI-USB-Tester Daughter Card	Leopard Imaging	LI-USB30- MIPI-TESTER	http://shop.leopardi- maging.com
J2	LI-CAM-OV10640-MIPI Daughter Card	Leopard Imaging	LI_CAM- OV10640-MIPI	http://shop.leopardi- maging.com
J3	MIPI 5MP AF Camera Daughter Card	UDOO	MIPI 5MP IR AF Camera	http://shop.udoo.org

MAX 10 FPGA 10M50 Evaluation Kit Overview

Send Feedback

Powering the Kit

You can apply power to the MAX 10 FPGA Evaluation Kit by plugging in either the 5V DC power adapter to wall jack, or the USB cable to your PC. For low-power design, USB cable connection is suggested, and it can easily provide both power and on-board USB Blaster connection. For high-power design, 5V DC adapter solution is preferred to ensure device performance.

The board includes one Jumper (J11) for power option selection. When use DC power adapter, J11 needs to be placed at Position 1 and 2; while for using USB power, J11 needs to be placed at Position 2 and 3.

Resistors (R292 and R293) can be populated and used in place of the jumper if you want to hard wire the power option.

When powered correctly, D9, D10 and D11 will light.

Caution: Resistors R292 and R293 are designed for hard wiring the power selection. J11 must not be used when either R292 or R293 is populated.

Installing the USB-Blaster Driver

The development board includes integrated USB-Blaster circuitry for FPGA programming. However, for the host computer and board to communicate, you must install the On-Board USB-Blaster II driver on the host computer.

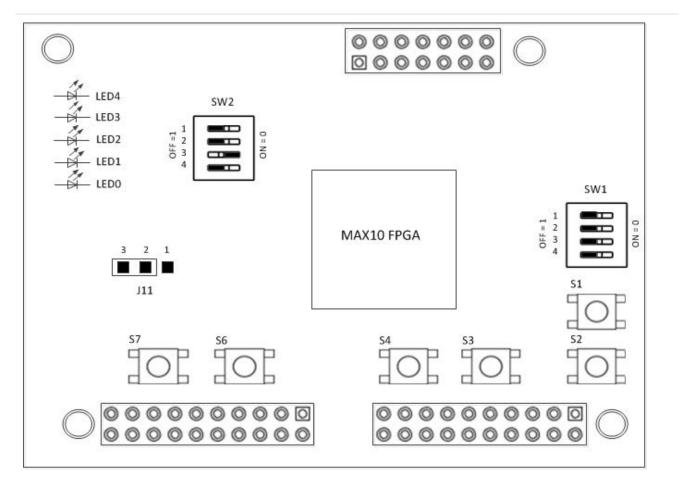
Installation instructions for the On-Board USB-Blaster II driver for your operating system are available on the Altera website. On the Altera Programming Cable Driver Information page of the Altera website, locate the table entry for your configuration and click the link to access the instructions.

Handling the Kit

When handling the board, it is important to observe the following static discharge precaution:

Caution: Without proper anti-static handling, the board can be damaged. Therefore, use anti-static handling precautions when touching the board.

ISO 9001:2008 Registered



^{© 2016} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

The MAX 10 Evaluation Kit must be stored between -40° C and 100° C. The recommended operating temperature is between 0° C and 85° C.

Factory Default Switch and Jumper Settings

Figure 2-1: Switch Locations and Default Settings (Board Top)

Table 2-1: Default SW1 DIP Switch Settings

Board Reference	Signal Name	Function	Default Position
SW1.1	USER_DIPSW0	User-Defined	HIGH (OFF =1)
SW1.2	USER_DIPSW1	User-Defined	HIGH (OFF =1)
SW1.3	USER_DIPSW2	User-Defined	HIGH (OFF =1)
SW1.4	USER_DIPSW3	User-Defined	HIGH (OFF =1)

Table 2-2: Default SW2 DIP Switch Settings

Board Reference	Signal Name	Function	Default Position
SW2.1	USER_DIPSW4	User-Defined	HIGH (OFF =1)

Getting Started

2-3

Board Reference	Signal Name	Function	Default Position
SW2.2	USER_DIPSW5	User-Defined	HIGH (OFF =1)
SW2.3	CONFIG_SEL	CONFIG_SEL: Use this pin to choose CFM0, CFM1 or CFM2 image as the first boot image in dual-image configu- ration. If the CONFIG_ SEL is set to low, the first boot image is CFM0 image. If CONFIG_SEL is set o high, the first boot image is CFM1 or CFM2 image. This pin is read before user mode and before the nSTATUS pin is asserted.	LOW (ON =0)
SW2.4	VTAP_BYPASSn	A virtual JTAG device is provided within the On-board USB-Blaster II, it provides access to diagnostic hardware and board identifica- tion information. The device shows up as an extra device on the JTAG chain with ID: 020D10DD. This switch removes the virtual JTAG device from the JTAG chain.	HIGH (OFF =1)

Table 2-3: Default J11 Jumper Settings

Jumper	Function	Setting
J11[1-2]	Jumper for board DC adapter power option when R292 and R293 not installed	Pins 1 and 2
J11[2-3]	Jumper for board USB power option when R292 and R293 not installed. This is the default power jumper position.	Pins 2 and 3

Board Components 3

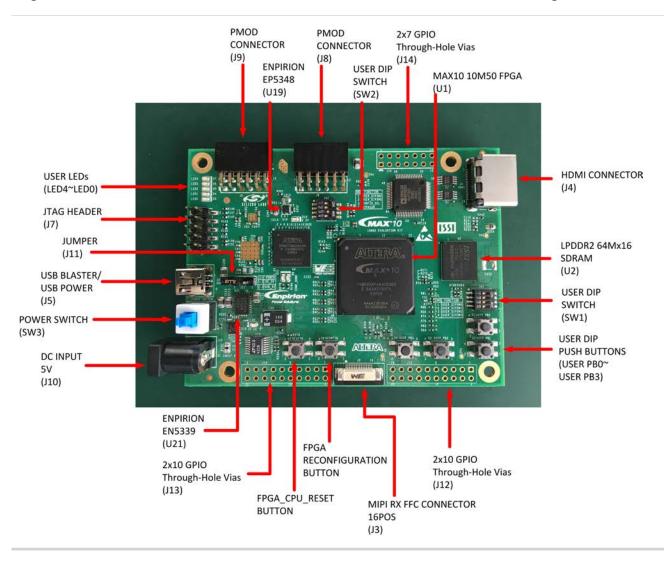
UG-20006 Subscribe Send Feedback

This chapter introduces all the important components on the evaluation kit. The *Overview of the MAX 10 FPGA Evaluation Kit Features* figure illustrates major component locations and *MAX 10M50 FPGA* (10M50, 484-FPGA) Evaluation Kit Components table in this chapter provides a brief description of all features of the board.

Related Information Board Component Blocks on page 1-1

Board Overview

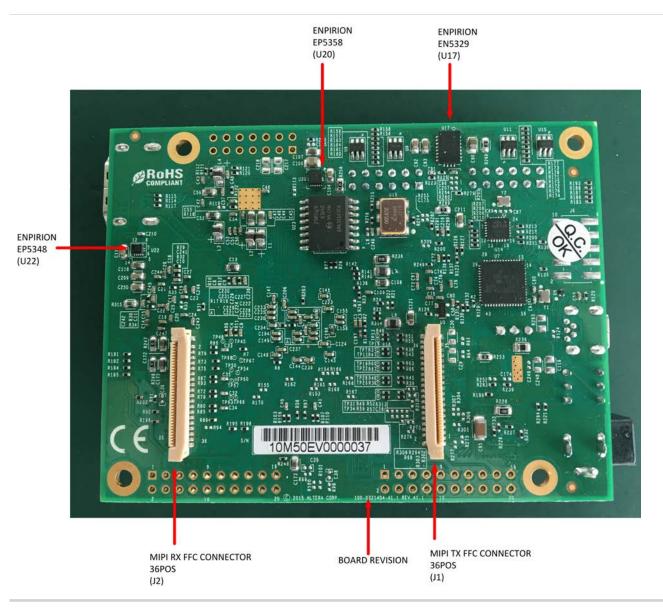
2016.02.29


This section provides an overview of the evaluation kit, including an annotated board image and component descriptions.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 3-1: Overview of the MAX 10 10M50 FPGA Evaluation Kit Features - Board Image (Front View)


Board Components

Send Feedback

3-3

Figure 3-2: Overview of the MAX 10 10M50 FPGA Evaluation Kit Features - Board Image (Rear View)

Table 3-1: MAX 10 FPGA (10M50, 484-FPGA) Evaluation Kit Components

Board Reference	Туре	Description
Featured Device		
U1	FPGA	MAX 10 FPGA 10M50DAF484C6GES, 50K LEs, F484 package, -6ES speed grade.
U13	CPLD	MAX II EPM1270 256-MBGA, 2.5V/3.3V, VCCINT for On-Board USB-Blaster II.
U17	Power Regulator	Enpirion EN5329QI 2A PowerSoC Low Profile Synchronous Buck DC-DC Converter with Integrated Inductor.

Board Components

Altera Corporation

		2016.
Board Reference	Туре	Description
U19, U22	Power Regulator	Enpirion EP5348UI 400mA PowerSoC Synchronous Buck Regulator with Integrated Inductor.
U20	Power Regulator	Enpirion EP5358HUI 600mA PowerSoC Synchronous Buck Regulator with Integrated Inductor.
U21	Power Regulator	Enpirion EN5339QI 3A PowerSoC Low Profile Synchronous Buck DC-DC Converter with Integrated Inductor.
Configuration and Setu	p Elements	
J5	On-Board (Embedded) USB- Blaster II	Mini Type-B USB connector for program- ming and debugging the FPGA.
J7	10-pin header	Optional JTAG direct via 10-pin header for external download cables.
SW2	DIP configuration and user switch	SW2 includes switches to control boot images and JTAG bypass.
S6	MAX10 nCONFIG push button	Toggling this button causes the FPGA to reconfigure from on-die Configuration Flash Memory (CFM).
S7	FPGA register push button	Toggling this button resets all registers in the FPGA.
J11	Jumper for board power option	Default connection is Pins 2 and 3 position, which uses USB power supply. If needed, change jumper position to Pins 1 and 2 for DC adapter power supply solution.
Status Elements		·
D8	Configuration done LED, green	Illuminates when the FPGA is configured.
D9	Power LED, yellow	Indicates that 5V is powered up success- fully.
D10	Power LED, yellow	Indicates that 2.5V is powered up success- fully.
D11	Power LED, yellow	Indicates that 1.2V is powered up success- fully.
Clock Circuitry		
U14	Programmable Clock	Four channel programmable oscillator with default frequencies of 24, 24, 125,100 MHz.
U15	50-MHz oscillator	50-MHz crystal oscillator for general purpose logic of MAX 10 and MAX II devices

devices.

General User Input and Output

Board Components

Board Overview

3-5

Board Reference	Туре	Description
S1, S2, S3, S4	User push buttons	Four user push buttons. Driven low when pressed.
D3, D4, D5, D6, D7	User LEDs, green	Five user LEDs. Illuminate when driven low.
SW1, SW2.1, SW2.2	User DIP switches	Quad user DIP switches.
Memory Devices		
U2	LPDDR2 SDRAM memory	64 M x16
U23	Quad serial peripheral interface (quad SPI) flash	512 Mb
Video and Display Ports	; ;	
J1	MIPI CSI-2 transmitter output	MIPI CSI-2 transmitter output to Leopard Imaging LI-MIPI-USB3-Tester module.
J2	MIPI CSI-2 receiver	MIPI CSI-2 receiver input from Leopard Imaging LI-CAM-OV10640-MIPI module.
J3	MIPI CSI-2 receiver	MIPI CSI-2 receiver input from UDOO Camera Module OV5640.
J4	HDMI video output	19-pin HDMI connector which provides a HDMIv1.4 video output of up to 1080p through an ADI (Analog Devices, Inc) HDMI transmitter (ADV7513).
I/O and Expansion Port	\$	
J8, J9	Two Diligent Pmod connectors	12-pin interface with 8 I/O signal pins used to connect low frequency, low I/O peripheral modules.
J12, J13	Two 2x10 GPIO connectors, user install	You can use this area to connect or solder additional components for connection of 9 true LVDS pairs with clock input and output, or 22 single-ended I/O signals.
J14	2x7 GPIO connectors, user install	You can use this area to connect or solder additional components for connection of 10 single-ended I/O signals.
Power Supply		
J10	DC input jack	Accepts 5V DC power supply when USB power supply is not in use.
SW3	Power switch	When using DC power adapter, switch to power on or off the board when power is supplied from the DC input jack. DC adapter and USB power don't work at the same time.

Board Reference	Туре	Description
J5	USB connector	USB power supply. Use with USB Y cable to provide 1A current. DC adapter power and USB power don't work at the same time.

Featured Device: MAX 10 FPGA

The MAX 10 FPGA development board features the MAX 10 10M50DAF484C6GES device (U1) in a 484-pin FineLine BGA package.

Table 3-2: MAX 10 FPGA 10M50DAF484C6GES Features

Logic Element (LEs)	Internal Configura- tion	M9K Memory (Kb)	User Flash Memory (KB)	18-bit X 18- bit Multipliers	PLLs	ADC Blocks / Temperature Sensing Diode	External Memory Interfaces Supported
50,000	Dual	1,638	736 Note 1	144	4	2/1	DDR3, DDR3L, DDR2, LPDDR2

Note: 1. The maximum possible value including user flash memory and configuration flash memory. For more information, refer to MAX 10 User Flash Memory User Guide.

Configuration

The MAX 10 10M50 Evaluation Kit supports two configuration methods:

- Configuration by downloading a **.sof** file to the FPGA. Any subsequent power cycling of the FPGA or reconfiguration will power up the FPGA to a blank state.
- Programming of the on-die FPGA Configuration Flash Memory (CFM) via a **.pof** file. Any power cycling of the FPGA or reconfiguration will power up the FPGA in self-configuration mode, using the files stored in the CFM

You can use two different USB-Blaster hardware components to program the .sof or .pof files:

- Embedded USB-Blaster II, mini Type-B connector (J5)
- JTAG header (J7). Use an external USB-Blaster, USB-Blaster II, or Ethernet Blaster download cable. The external download cable connects to the board through the JTAG header.

Using the Quartus II Programmer

You can use the Quartus II Programmer to configure the FPGA with a .sof.

Before configuring the FPGA:

- Ensure that the Quartus II Programmer and the USB-Blaster driver are installed on the host computer
- The USB cable is connected to the kit
- Power to the board is on, and no other applications that use the JTAG chain are running.

Altera Corporation

Board Components

To configure the MAX 10 FPGA:

- **1.** Start the Quartus II Programmer.
- 2. Click Add File and select the path to the desired .sof.
- 3. Turn on the Program/Configure option for the added file.
- 4. Click Start to download the selected file to the FPGA. Configuration is complete when the progress bar reaches 100%.

The Quartus II Convert Programming File (CPF) GUI can be used to generate a .sof file that can use for internal configuration. You can directly program the MAX 10 device's flash which includes Configuration Flash Memory (CFM) and User Flash Memory (UFM) by using a download cable with the Quartus II software programmer.

Selecting the Internal Configuration Scheme

For all MAX 10 devices, except 10M02 device, there are total of 5 different modes you can select internal configuration. Please refer to Figure 2-2: Configuration Flash Memory Sectors Utilization for all MAX 10 Devices Except for 10M02 Device of MAX 10 FPGA Configuration User Guide. You can access the PDF of the MAX 10 FPGA Configuration User guide here.

The internal configuration scheme needs to be selected before design compilation. To select the configuration mode:

- 1. Open the Quartus II software and load a project using MAX 10 device family.
- 2. On the Assignments menu, click Settings. The Settings dialog box appears.
- 3. In the Category list, select **Device**. The **Device** page appears.
- 4. Click Device and Pin Options.
- 5. In the Device and Pin Options dialog box, click the Configuration tab.
- 6. In the Configuration Scheme list, select Internal Configuration.
- 7. In the **Configuration Mode** list, select 1 out of 5 configuration modes. For the dual-boot feature:
 - **a.** Must have a Dual Boot IP in the design, for example, in a Qsys component.
 - b. Choose Dual Compressed Images (512 Kbits UFM) for the Configuration Mode.
 - c. Generate two .sof files above and convert them into one .pof file for CFM programming.
- 8. Turn on Generate compressed bit-streams if needed, and click OK.

Status Elements

This topic lists the non-user status elements for the MAX 10 10M50 FPGA Evaluation Board.

Table 3-3: Status LED Signal Names

Board Reference	Signal Name	Colour	Device/Pin Number	I/O Standard
D8	MAXII_CONF_ DONE	Green	MAX II / Y10	3.3 V
D9	5V_LED_R	Yellow		
D10	2.5V_LED_R	Yellow		
D11	1.2V_LED	Yellow	MAX II / Y9	3.3 V

Board Components

3-7

Setup Elements

Table 3-4: Board Settings DIP Switch and Jumper Schematic Signals

Board Reference	Signal Name	Device / Pin Number	I/O Standard
SW2.3	MAX10_CONFIG_SEL	MAX 10 / H10	3.3V
SW2.4	MAX10_BYPASSn	MAX II / B20	3.3V

Table 3-5: Board Settings Push Button Signal Names

Board Reference	Signal Name	MAX 10 FPGA Pin Number	I/O Standard
S6	MAX10_nCONFIG	H9	3.3V
S7	MAX10_RESETn	D9	3.3V

General User Input/Output

User-defined I/O signal names, FPGA pin numbers, and I/O standards for the MAX 10 FPGA 10M50 Evaluation Board.

Table 3-6: User-Defined Push Button Signal Names

Board Reference	Signal Name	MAX 10 FPGA Pin Number	I/O Standard
S1	USER_PB0	R20	1.2 V
S2	USER_PB1	Y20	1.2 V
S3	USER_PB2	Y21	1.2 V
S4	USER_PB3	U20	1.2 V

Table 3-7: User-Defined DIP Switch Schematic Signal Names

Board Reference	Signal Name	MAX 10 FPGA Pin Number	I/O Standard
SW1.1	USER_DIPSW0	R18	1.2 V
SW1.2	USER_DIPSW1	T19	1.2 V
SW1.3	USER_DIPSW2	T18	1.2 V
SW1.4	USER_DIPSW3	U19	1.2 V
SW2.1	USER_DIPSW4	G4	3.3 V

Board Components

Send Feedback

3-9

Board Reference	Signal Name	MAX 10 FPGA Pin Number	I/O Standard
SW2.2	USER_DIPSW5	F5	3.3 V

Table 3-8: User LED Schematic Signal Names

Board Reference	Signal Name	Color	MAX 10 FPGA Pin Number	I/O Standard
D3	USER_LED0	Green	C3	3.3 V
D4	USER_LED1	Green	C4	3.3 V
D5	USER_LED2	Green	C5	3.3 V
D6	USER_LED3	Green	D5	3.3 V
D7	USER_LED4	Green	C7	3.3 V

Table 3-9: User Defined I/O Through-Hole Vias

Board Reference	Schematic Signal Name	MAX 10 FPGA Pin Number	I/O Standard ^{Note 1}	Description
J12.1	2.5V Power			Power Supply Connector for J12
J12.2	2.5V Power			Power Supply Connector for J12
J12.3	USER_CLKIN_ IO_P	K22	DIFFIO_RX_R40P or CLK3P	Dual purpose pin. Either User I/O or Clock input ref. for this group of LVDS channels
J12.4	USER_LVDS_P2	Y17	DIFFIO_TX_RX_ B43P, High Speed	LVDS User I/O_2. Note 1
J12.5	USER_CLKIN_ IO_N	K21	DIFFIO_RX_ R40N or CLK3N	Dual purpose pin. Either User I/O or Clock input ref. for this group of LVDS channels
J12.6	USER_LVDS_N2	AA17	DIFFIO_TX_RX_ B43N, High Speed	LVDS User I/O_2. Note 1
J12.7	GND			Ground Reference for this group of I/Os
J12.8	GND			Ground Reference for this group of I/Os

3-10

				2016.0
Board Reference	Schematic Signal Name	MAX 10 FPGA Pin Number	I/O Standard ^{Note 1}	Description
J12.9	USER_LVDS_P0	AA10	DIFFIO_TX_RX_ B22P, High Speed	LVDS User I/O_0. Note 1
J12.10	USER_LVDS_P3	Y14	DIFFIO_TX_RX_ B37P, High Speed	LVDS User I/O_3. Note 1
J12.11	USER_LVDS_N0	Y10	DIFFIO_TX_RX_ B22N, High Speed	LVDS User I/O_0. Note 1
J12.12	USER_LVDS_N3	Y13	DIFFIO_TX_RX_ B37N, High Speed	LVDS User I/O_3. Note 1
J12.13	GND			Ground Reference for this group of I/Os
J12.14	GND			Ground Reference for this group of I/Os
J12.15	USER_LVDS_P1	W8	DIFFIO_TX_RX_ B13p, High Speed	LVDS User I/O_1. Note 1
J12.16	CLKOUT_LVDS_ P	V17	DIFFIO_TX_RX_ B57P or PLL_B_ CLKOUTP	Dual purpose pin. Either User I/O or Clock output ref. for this group of LVDS channels
J12.17	USER_LVDS_N1	W7	DIFFIO_TX_RX_ B13n, High Speed	LVDS User I/O_1. Note 1
J12.18	CLKOUT_LVDS_ N	W17	DIFFIO_TX_RX_ B57N or PLL_B_ CLKOUTN	Dual purpose pin. Either User I/O or Clock output ref. for this group of LVDS channels
J12.19	GND			Ground Reference for this group of I/Os
J12.20	GND			Ground Reference for this group of I/Os
J13.1	2.5V Power			Power Supply for Connector J13
J13.2	2.5V Power			Power Supply for Connector J13
J13.3	USER_LVDS_P5	V8	DIFFIO_TX_RX_ B7p, High Speed	LVDS User I/O_5. Note 1

Altera Corporation

Board Components

UG-20006 2016.02.29

2.29							
Board Reference	Schematic Signal Name	MAX 10 FPGA Pin Number	I/O Standard ^{Note 1}	Description			
J13.4	USER_LVDS_P8	AA7	DIFFIO_TX_RX_ B16p, High Speed	LVDS User I/O_8. Note 1			
J13.5	USER_LVDS_N5	V7	DIFFIO_TX_RX_ B7n, High Speed	LVDS User I/O_5. Note 1			
J13.6	USER_LVDS_N8	AA6	DIFFIO_TX_RX_ B16n, High Speed	LVDS User I/O_8. Note 1			
J13.7	GND			Ground Reference for this group of I/Os			
J13.8	GND			Ground Reference for this group of I/Os			
J13.9	USER_LVDS_P6	W6	DIFFIO_TX_RX_ B1p, High Speed	LVDS User I/O_6. Note 1			
J13.10	USER_LVDS_P4	W10	DIFFIO_TX_RX_ B11p, High Speed	LVDS User I/O_4. Note 1			
J13.11	USER_LVDS_N6	W5	DIFFIO_TX_RX_ B1n, High Speed	LVDS User I/O_6. Note 1			
J13.12	USER_LVDS_N4	W9	DIFFIO_TX_RX_ B11n, High Speed	LVDS User I/O_4. Note 1			
J13.13	GND			Ground Reference for this group of I/Os			
J13.14	GND			Ground Reference for this group of I/Os			
J13.15	USER_LVDS_P7	W3	DIFFIO_TX_RX_ B5p, High Speed	LVDS User I/O_7. Note 1			
J13.16	NC			Not Connected			
J13.17	USER_LVDS_N7	W4	DIFFIO_TX_RX_ B5n, High Speed	LVDS User I/O_7. Note 1			
J13.18	NC			Not Connected			
J13.19	GND			Ground Reference for this group of I/Os			
J13.20	GND			Ground Reference for this group of I/Os			

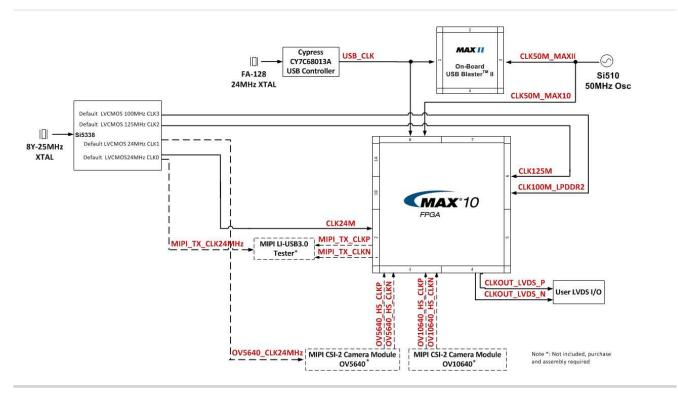
Board Components

Altera Corporation

			2016.02.2	
Board Reference	Schematic Signal Name	MAX 10 FPGA Pin Number	I/O Standard ^{Note 1}	Description
J14.1	USER_IO0	A17	DIFFIO_RX_ T10n, High Speed	User I/O_0
J14.2	USER_IO5	A19	DIFFIO_RX_T8n, High Speed	User I/O_5
J14.3	USER_IO1	B19	DIFFIO_RX_T6n, High Speed	User I/O_1
J14.4	USER_IO6	A20	DIFFIO_RX_T8p, High Speed	User I/O_6
J14.5	3.3V power			Power Supply for Connector J14
J14.6	3.3V power			Power Supply for Connector J14
J14.7	USER_IO2	E16	DIFFIO_RX_T1p, High Speed	User I/O_2
J14.8	USER_IO7	C18	DIFFIO_RX_T7p, High Speed	User I/O_7
J14.9	USER_IO3	C19	DIFFIO_RX_T6n, High Speed	User I/O_3
J14.10	USER_IO8	C17	DIFFIO_RX_T2n, High Speed	User I/O_8
J14.11	GND			Ground Reference for this group of I/Os
J14.12	GND			Ground Reference for this group of I/Os
J14.13	USER_IO4	F16	DIFFIO_RX_T5p, High Speed	User I/O_4
J14.14	USER_IO9	D17	DIFFIO_RX_T2p, High Speed	User I/O_9

Note: 1. Termination resistors are required to be installed by the user for proper high speed LVDS I/O use.

Board Components


Clock Circuitry

The MAX 10 FPGA 10M50 Evaluation Board includes two oscillators:

- A four channel programmable oscillator with default frequency of 24-MHz, 24-MHz, 125-MHz, 100-MHz.
- A two channel crystal oscillator with default frequency of 50-MHz.

On-Board Oscillators

Figure 3-3: MAX 10 10M50 FPGA Evaluation Kit Clocks

Table 3-10: On-Board Oscillators

Source	Schematic Signal Name	Frequency	I/O Standard	Device / Pin Number	Application
U14	CLK24M	24.000 MHz	1.8 V CMOS	MAX 10/M9	Programmable default 24 MHz clock for MAX 10
U14	OV5640_ CLK24MHz	24.000 MHz	3.3 V CMOS	16 POS FFC connector / J3.12	Clock for MIPI RX OV5640 module

Source	Schematic Signal Name	Frequency	l/O Standard	Device / Pin Number	Application
U14	CLK125M	125.000 MHz	3.3 V CMOS	MAX 10/K22	Programmable default 125 MHz clock for PLL generating required clocks for LVDS GPIO interface
U14	CLK100M_LPDDR2	100.000 MHz	3.3 V CMOS	MAX 10/E10	LPDDR2 clock
U15	CLK50M_MAX10	50.000 MHz	3.3 V CMOS	MAX 10/J10	MAX 10 clock
U15	CLK50M_MAXII	50.000 MHz	3.3 V CMOS	MAX II/L1	MAX II clock

Off-Board Clock Input/Output

The MAX 10 10M50 Evaluation Board has input and output clocks which can be driven onto the board. Resistor reworking might be needed for specific application.

Table 3-11: Off-Board Clock Inputs and Outputs

Source	Schematic Signal Name	I/O Standard	MAX 10 FPGA	Description
J12	USER_CLKIN_P_ MAX10	1.2 V	K21	Single-ended clock input, or positive terminal for differential clock inputs from user GPIO
J12	USER_CLKIN_N_ MAX10	1.2 V	K22	Single-ended clock input, or negative terminal for differential clock inputs from user GPIO
J12	CLKOUT_LVDS_ P	2.5 V	V17	Single-ended clock output, or positive terminal for differential clock output to user GPIO
J12	CLKOUT_LVDS_ N	2.5 V	W17	Single-ended clock output, or negative terminal for differential clock output to user GPIO

Board Components

Send Feedback

Clock Control GUI

This kit includes a Clock Control GUI application.

The Clock Control GUI application communicates over the JTAG bus to a test design running in the FPGA. It shares the JTAG bus with other applications like the Nios II debugger and the SignalTap[®] II Embedded Logic Analyzer. Because the Quartus II Programmer uses most of the bandwidth of the JTAG bus, other applications using the JTAG bus might time out. Be sure to close the other applications before attempting to reconfigure the FPGA using the Quartus II Programmer.

The Clock Control

The MAX 10 FPGA 10M50 Evaluation Board Clock Control application sets the programmable oscillators to any frequency between 10 MHz and 200 MHz. It communicates with the MAX II device on the board through the JTAG bus. The programmable oscillators are connected to the MAX II device through a 2-wire serial bus.

To run the Clock Control GUI, perform the following steps:

- 1. Make sure Quartus II 14.1 or later version is installed.
- 2. Connect the USB cable to the MAX 10M50 FPGA Evaluation Board and power cycle the board.
- 3. Double click the **Clock Control GUI** application and the interface shows as in the figure below.
- **4.** Perform **Default** to set the default frequencies to the board: CLK0-24MHz, CLK1-24MHz, CLK2-125MHz, CLK3-100MHz
- 5. Peform **Read** operation to get the current frequency setup.
- 6. If necessary, input new frequencies to each clock frequency fill-in box and perform Set New Freq to set the board to the input clock frequency setup.
- 7. Select the **Disable** to disable any clock channel if needed.

Figure 3-4: The Si5338 Tab

15338	臣恐	76		
	00.0000 MHz			
CLK0	24.0000	MHz	Disable	
CLK1	24.0000	MHz		
CLK2	125.0000	MHz	Ē	
CLK3	100.0000	MHz	E	

Table 3-12: The Clock Control Tab

Control	Description		
F_vco	Displays the generating signal value of the voltage-controlled oscillator		
Registers	Display the current frequencies for each oscillator		
Frequency (MHz)	Allows you to specify the frequency of the clock		
Disable	Disable each oscillators as required		
Read	Reads the current frequency setting for the oscillator associated with the active tab		
Default	Sets the frequency for the oscillator associated with the active tab back to its default value. This can be also be accompanied by power cycling the board.		
Set New Freq	Sets the programmable oscillator frequency for the selected clock to the value in the CLK0 and CLK3 controls. Frequency changes might take several milliseconds to take effect. You might see glitches on the clock during this time. Altera recommends resetting the FPGA logic after changing frequen- cies.		
	Note: Changing CLK0 of Si5338 will affect the Clock/ Power GUI. Once clock from Port CLK0 is used to drive the MAX II device which is working as a 2- wire serial bus interface connected to Si570, Si5338 and power monitor.		

Components and Interfaces

This section describes the evaluation board's ports and optional interface cards relative to the MAX 10 FPGA device.

HDMI Video Output

The MAX 10 10M50 evaluation kit supports one HDMI transmitter and one HDMI receptacle. The transmitter incorporates HDMI v1.4 features, and is capable of supporting an input data rate up to 165 MHz (1080p @ 60Hz, UXGA @ 60Hz). The connection between HDMI transmitter and MAX 10 is established in Bank 7, and the communication can be done via I2C interface.

Table 3-13: HDMI Pin Assignments, Signal Names and Functions

Board Reference (U3)	Signal Name	MAX 10 FPGA Pin Number	I/O Standard	Description
U3.62	HDMI_VIDEO_ DIN0	J12	3.3 V	HDMI digital video data bus

Board Components