

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# ML630 Virtex-6 HXT FPGA Optical Transmission Network Evaluation Board User Guide

UG828 (v1.0) September 28, 2011





The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at <a href="http://www.xilinx.com/warranty.htm">http://www.xilinx.com/warranty.htm</a>; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: <a href="http://www.xilinx.com/warranty.htm#critapps">http://www.xilinx.com/warranty.htm#critapps</a>.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

## **Revision History**

The following table shows the revision history for this document.

| Date     | Version | Revision                |
|----------|---------|-------------------------|
| 09/28/11 | 1.0     | Initial Xilinx release. |

# Table of Contents

| Revision History                                | 2  |
|-------------------------------------------------|----|
| Preface: About This Guide                       |    |
|                                                 | _  |
| Guide Contents                                  |    |
| Conventions                                     |    |
| Typographical                                   |    |
| Online Document                                 | 6  |
| Chapter 1: ML630 Board Features and Operation   |    |
| ML630 Board Features                            | 7  |
| Detailed Description                            |    |
| Virtex-6 HXT XC6VHX565T-2FFG1924 FPGA U1 and U2 |    |
| ML630 12 VDC Power Input                        |    |
| FPGA Power Inhibit Jumper                       |    |
| FPGA U1 and U2 Power System Controllers         |    |
| FPGA U1 Power Regulators                        |    |
| FPGA U2 Power Regulators                        |    |
| Board-wide 3.3V Regulator                       |    |
| ML630 FPGA Configuration                        |    |
| FPGA U1 Indicators and I/O                      | 10 |
| FPGA U2 Indicators and I/O                      | 10 |
| FPGA U1 FCI Airmax Interlaken Connectors        | 10 |
| FPGA U2 FCI Airmax Interlaken Connectors        | 11 |
| FPGA U1 and FPGA U2 Clock Circuits              |    |
| ML630 I <sup>2</sup> C Bus                      | 11 |
| ML630 HPC FMC Connectors.                       |    |
| Default Jumper Positions                        |    |
| Monitoring Voltage and Current                  |    |
| References                                      |    |
| FPGA U1 and U2                                  |    |
| References                                      |    |
| Board Power and Switch                          |    |
| Disabling FPGA Onboard Power                    |    |
| FPGA Configuration                              |    |
| System ACE Controller                           | 16 |
| System ACE Controller Reset                     | 17 |
| Configuration Address DIP Switches              |    |
| References                                      |    |
| FPGA U1 PROG Pushbutton, INIT LED and DONE LED  |    |
| FPGA U1 User LEDs, DIP and Pushbutton Switches  |    |
| User DIP Switches (Active High)                 |    |
| User Push Buttons (Active High)                 |    |
| FPGA U1 User GPIO Header                        |    |
| FPGA U1 USB to UART Bridge                      |    |
| References                                      | 20 |

| FPGA U1 200 MHz 2.5V LVDS Oscillator                         |    |
|--------------------------------------------------------------|----|
| References                                                   | 21 |
| FPGA U2 PROG Push Button, INIT LED and DONE LED              | 21 |
| FPGA U2 User LEDs, DIP and Pushbutton Switches               | 21 |
| FPGA U2 User DIP Switches (Active High)                      |    |
| User Push Buttons (Active High)                              |    |
| FPGA U2 User GPIO Header                                     |    |
| FPGA U2 USB to UART Bridge                                   |    |
| References                                                   |    |
| FPGA U2 200 MHz 2.5V LVDS Oscillator                         |    |
| References                                                   |    |
| FPGA U1 FCI Airmax Interlaken Connectors                     |    |
| FPGA U1 FCI J3 RX Reference Clock to SMA Connection          |    |
|                                                              |    |
| FPGA U2 FCI Airmax Interlaken Connectors                     |    |
| PGA U2 FCI J4 RX Reference Clock to SMA Connection           |    |
| FPGA U1 GTX to FPGA U2 GTX Interface                         |    |
| 80 LVDS Pair Connection FPGA U1 to FPGA U2                   |    |
| FPGA U1 and U2 Differential SMA Clock Inputs                 |    |
| Differential 2.5V Si570 LVDS Oscillators                     |    |
| Differential SN65LVCP408PAP 8X8 Crosspoint switches          |    |
| FPGA U1 Differential SMA Test Clock Inputs                   |    |
| FPGA U2 Differential SMA Test Clock Inputs                   |    |
| FPGA U1 and U2 Si570 with 1-to-6 Clock Buffer (Two Circuits) |    |
| FPGA U1 and U2 Example GTH Clock Routing Example             |    |
| Setup of U1 and U2 GTH Bank 106 and 107 Clocks               |    |
| FMC HPC Connectors                                           |    |
| System Monitor                                               |    |
| I <sup>2</sup> C Bus Management                              | 61 |
| ML630 FCI Airmax Interlaken Plug                             |    |
| and Receptacle Level-Shifted Control Signals                 | 64 |
| FPGA U1 VGA Debug Connector                                  | 65 |
| FPGA U2 VGA Debug Connector                                  |    |
|                                                              |    |
| Appendix A: Default Jumper Positions                         |    |
| Appendix A. Deladit bulliper Positions                       |    |
|                                                              |    |
| Appendix B: VITA 57.1 FMC HPC Connector Pinout               |    |
|                                                              |    |
| A                                                            |    |
| Appendix C: ML630 Master UCF Listing for U1                  |    |
|                                                              |    |
| Appendix D: ML630 Master UCF Listing for U2                  |    |
| Appendix D. Wildow Waster OCF Listing for O2                 |    |
|                                                              |    |
| Appendix E: ML630C Schematic Page List                       |    |
| 11                                                           |    |
| Accessible Bosonical States                                  |    |
| Appendix F: Documents and Resources                          |    |
| Documents                                                    | 99 |
|                                                              |    |
| Webpages                                                     |    |
| Product Support                                              | 99 |



## About This Guide

This document describes the basic setup, features, and operation of the ML630 Virtex®-6 FPGA HXT Optical Transmission Network (OTN) evaluation board. The ML630 board provides the hardware environment for characterizing and evaluating the GTX and GTH transceivers available on the Virtex®-6 XC6VHX565T-2FFG1924C FPGA.

In this document Virtex-6 FPGA GTX transceiver is abbreviated as GTX transceiver. Similarly, Virtex-6 FPGA GTH transceiver is abbreviated as GTH transceiver.

### **Guide Contents**

This user guide contains the following chapters and appendices:

- Chapter 1, ML630 Board Features and Operation, describes the components, features, and operation of the ML630 Virtex-6 HXT FPGA OTN evaluation board.
- Appendix A, Default Jumper Positions, lists the jumpers that must be installed on the board for proper operation.
- Appendix B, VITA 57.1 FMC HPC Connector Pinout, provides a pinout reference for the FPGA mezzanine card (FMC) connectors.
- Appendix C, ML630 Master UCF Listing for U1, provides a listing of the ML630 FPGA U1 user constraints file (UCF).
- Appendix D, ML630 Master UCF Listing for U2, provides a listing of the ML630 FPGA U2 user constraints file (UCF).
- Appendix E, ML630C Schematic Page List, provides a listing of schematic page numbers versus the detailed description callout numbers, for easy cross-referencing.
- Appendix F, Documents and Resources, lists documents relevant to Virtex®-6 devices, the ML630 Virtex-6 FPGA GTX Transceiver Characterization Board, and intellectual property.

To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.



## **Conventions**

This document uses the following conventions. An example illustrates each convention.

## Typographical

The following typographical conventions are used in this document:

| Convention     | Meaning or Use                                                   | Example                                                                                            |
|----------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Courier font   | Messages, prompts, and program files that the system displays    | speed grade: - 100                                                                                 |
| Courier bold   | Literal commands that you enter in a syntactical statement       | ngdbuild design_name                                                                               |
| Helvetica bold | Commands that you select from a menu                             | File → Open                                                                                        |
|                | Keyboard shortcuts                                               | Ctrl+C                                                                                             |
|                | Variables in a syntax statement for which you must supply values | ngdbuild design_name                                                                               |
| Italic font    | References to other manuals                                      | See the <i>Command Line Tools User Guide</i> for more information.                                 |
|                | Emphasis in text                                                 | If a wire is drawn so that it overlaps the pin of a symbol, the two nets are <i>not</i> connected. |

## **Online Document**

The following conventions are used in this document:

| Convention            | Meaning or Use                                             | Example                                                                                                         |
|-----------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Blue text             | Cross-reference link to a location in the current document | See the section "Additional<br>Resources" for details.<br>Refer to "Title Formats" in<br>Chapter 1 for details. |
| Blue, underlined text | Hyperlink to a website (URL)                               | Go to <a href="http://www.xilinx.com">http://www.xilinx.com</a> for the latest speed files.                     |



# ML630 Board Features and Operation

This chapter describes the components, features, and operation of the ML630 Virtex®-6 HXT FPGA Optical Transmission Network (OTN) evaluation board. The ML630 board provides the hardware environment for characterizing and evaluating the GTX and GTH transceivers available on the Virtex -6 XC6VHX565T-2FFG1924C FPGA.

#### **ML630 Board Features**

- Two Virtex-6 XC6VHX565T-2FFG1924C FPGAs
- On-board power regulators for all necessary voltages with power status LEDs
- All ML630 FPGA U1 and U2 I/O banks V<sub>CCO</sub> voltage is 2.5V
- Two types of external power supply jacks (12V "brick" DIN4 type, PC ATX type)
- USB JTAG configuration port for use with USB A-to-Mini-B cable
- System ACE<sup>TM</sup> controller with companion CompactFlash socket
- General purpose pushbutton and DIP switches, LEDs, and test I/O header for each FPGA
- VGA 2X5 male debug header for each FPGA
- USB-to-UART bridge with USB Mini-B pcb connector for each FPGA
- Two VITA 57.1 FMC HPC connectors
- I<sup>2</sup>C bus hosting EEPROM, clock sources and FMC connectors
- A separate SiTime fixed 200 MHz 2.5V LVDS oscillator wired to each FPGAs global clock inputs
- Eight pairs of differential clock input SMA connectors
- Six I<sup>2</sup>C programmable Silicon Labs Si570 3.3V LVPECL 10 MHz to 810 MHz oscillators
- Two differential input 8X8 crosspoint switches providing 16 selectable differential clock sources
- Four sets of plug and receptacle FCI Airmax 120 pin connectors implementing the Interlaken interconnect protocol

The ML630 board block diagram is shown in Figure 1-1.

**Caution!** The ML630 board can be damaged by electrostatic discharge (ESD). Follow standard ESD prevention measures when handling the board.



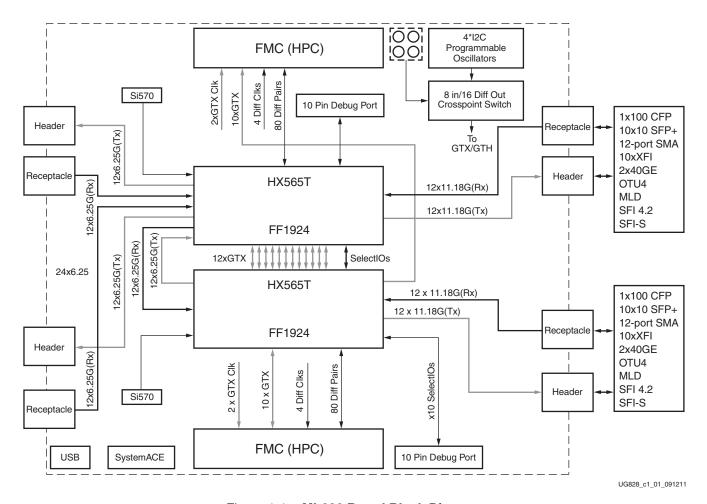
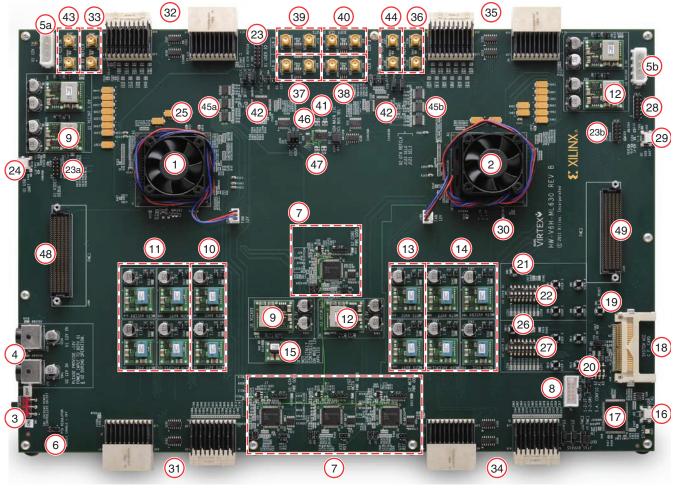



Figure 1-1: ML630 Board Block Diagram


## **Detailed Description**

**Note:** This section of the user guide is intended to be read in conjunction with reference to the ML630 (pdf) Schematic 0381388. The ML630 board hosts a complicated clocking system and intricate FPGA-to-FPGA and Interlaken connector connectivity which the schematic helps clarify. Please refer to the schematic pages associated with the circuitry described in each section of this detailed description.

Figure 1-2 shows the ML630 board described in this user guide. Each numbered feature that is referenced in Figure 1-2 is described in the sections that follow.

**Note:** The image in Figure 1-2 is for reference only and might not reflect the current revision of the board.





UG828\_c1\_02\_080411

Figure 1-2: Detailed Description of ML630 Board Components

#### Virtex-6 HXT XC6VHX565T-2FFG1924 FPGA U1 and U2

- 1. FPGA U1
- 2. FPGA U2

#### ML630 12 VDC Power Input

- 3. Main power on-off "soft" slide switch (SW1)
- 4. U1/U2 12V DIN4 connectors (J122 and J75)
- 5. U1/U2 12V ATX connector (J141 and J102)

#### FPGA Power Inhibit Jumper

6. J289 regulator inhibit jumper

#### FPGA U1 and U2 Power System Controllers

- 7. U1 and U2 TI UCD9240 digital power controllers (U8, U19, U32 and U77)
- 8. PMBus connector (J7) for TI GPIO adapter (PMBus pod)



#### FPGA U1 Power Regulators

- 9. U1  $V_{CCINT}$  (U10/U41) and  $V_{CCAUX}$  (U12) TI PTD08A020W regulators
- 10. U1 GTX (U4, U5) TI PTD08A101W regulators
- 11. U1 GTH (U3, U14, U21, U20) TI PTD08A010W and PTD08A006W regulators

#### FPGA U2 Power Regulators

- 12. U2  $V_{CCINT}$  (U81/U82) and  $V_{CCAUX}$  (U83) TI PTD08A020W regulators
- 13. U2 GTX (U73, U74) TI PTD08A101W regulators
- 14. U2 GTH (U72, U67, U68, U69) TI PTD08A010W and PTD08A006W regulators

#### Board-wide 3.3V Regulator

15. TI PTH12000W 3.3V regulator (U6)

#### ML630 FPGA Configuration

- 16. USB JTAG Mini-B connector (J20)
- 17. Embedded JTAG (U48 top of board) and (U45 bottom of board) circuits
- 18. SystemACE CompactFlash (C.F.) Socket (U46 top of board), SystemACE IC (U47 bottom of board)
- 19. SystemACE reset pushbutton (SW2)
- 20. SystemACE C.F. image select DIP switch (SW3)

#### FPGA U1 Indicators and I/O

- 21. U1 PROG pushbutton (SW5), INIT LED (DS20) and DONE LED (DS6)
- 22. U1 User LEDs (DS10-DS17), User DIP switch (SW7) and user pushbutton switches (SW4, SW6, SW8, SW9)
- 23. 23a: U1 User GPIO 2X6 header (J285) 23b: VGA video debug 2x5 header (J16)
- 24. U1 USB UART Mini-B connector (J54 top of board) and USB-to-UART bridge IC (U26 bottom of board)
- 25. U1 SiTime 200 MHz 2.5V LVDS fixed frequency oscillator (U22 bottom of board)

#### FPGA U2 Indicators and I/O

- 26. U2 PROG pushbutton (SW11), INIT LED (DS54) and DONE LED (DS29)
- 27. U2 User LEDs (DS30-DS38), User DIP switch (SW16) and user pushbutton switches (SW12-SW15)
- 28. U2 User GPIO 2X6 header (J103)
- 29. U2 USB UART Mini-B connector (J106) top of board) and USB-to-UART bridge IC (U26 bottom of board)
- 30. U2 SiTime 200 MHz 2.5V LVDS fixed frequency oscillator (U63 bottom of board)

#### FPGA U1 FCI Airmax Interlaken Connectors

31. P1, J1 FCI Airmax Interlaken plug and receptacle connectors



- 32. P3, J3 FCI Airmax Interlaken plug and receptacle connectors
- 33. J3 refclk (J132, J133) SMA connectors
- 34. P2, J2 FCI Airmax Interlaken plug and receptacle connectors

#### FPGA U2 FCI Airmax Interlaken Connectors

- 35. P4, J4 FCI Airmax Interlaken plug and receptacle connectors
- 36. J4 refclk (J134, J135) SMA connectors

#### FPGA U1 and FPGA U2 Clock Circuits

- 37. Differential clock input connectors CLK0 SMA (J167, J168) with 1-to-2 3.3V LVPECL buffer (U98)
- 38. Differential clock input connectors CLK1 SMA (J169,J170) with 1-to-2 3.3V LVPECL buffer (U99)
- 39. Differential clock input connectors CLK2 SMA (J171, J172) with 1-to-2 3.3V LVPECL buffer (U96)
- 40. Differential clock input connectors CLK3 SMA (J9, J10) with 1-to-2 3.3V LVPECL buffer (U97)
- 41. Four I<sup>2</sup>C programmable Silicon Labs Si570 3.3V LVPECL 10 MHz-to-810 MHz oscillators (U43, U44, U51, U52) each with a 1-to-2 3.3V LVPECL buffer (U53, U54, U55, U56, bottom of board)
- 42. Two differential clock input-output 8x8 crosspoint switches (U57, U58)
- 43. FPGA U1 differential test clock input SMA connectors (J124, J125) with 1-to-6 3.3V LVDS buffer (U126)
- 44. FPGA U2 differential test clock input SMA connectors (J126, J127) with 1-to-6 3.3V LVDS buffer (U127)
- 45. Six dual 2-to-1 3.3V LVDS input, 3.3V LVPECL output differential clock multiplexers (U102, U115, U116, U120, U121, U122)
- 46. Two I<sup>2</sup>C programmable Silicon Labs Si570 3.3V LVPECL 10 MHz-to-810 MHz oscillators, one for FPGA U1 (U64) and one for FPGA U2 (U65) (bottom of board), each with a 1-to-6 3.3V LVDS buffer (U13, U18), top of board)

#### ML630 I<sup>2</sup>C Bus

47. I<sup>2</sup>C Main Bus: M24C02 256x8 EEPROM (U59), TI PCA9548 (U31) 1-to-8 port I<sup>2</sup>C expander (six ports wired to the Si570 oscillators, two ports wired to the 8x8 crosspoint switches); U1 I<sup>2</sup>C: HPC FMC1 J290; U2 I<sup>2</sup>C: HPC FMC2 J104

#### ML630 HPC FMC Connectors

- 48. FMC1 connector (J290)
- 49. FMC2 connector (J104)

#### **Default Jumper Positions**

A list of shunts and their required positions for normal board operation is provided in Appendix A, Default Jumper Positions.



#### Monitoring Voltage and Current

Voltage and current monitoring and control are available for all power rails except the fixed 3.3V through Texas Instruments' Fusion Digital Power graphical user interface (GUI). All onboard TI power controllers are wired to the same PMBus. The PMBus connector, J7, is provided for use with the TI GPIO Interface Adapter (PMBus pod) and associated TI Fusion Digital Power GUI.

#### References

More information about the power system components used by the ML630 board is available from the Texas Instruments digital power website at:

http://www.ti.com/ww/en/analog/digital-power/index.html

#### FPGA U1 and U2

Figure 1-2 callouts [1, 2]

The ML630 board hosts two Virtex-6 XC6VHX565T-2FFG1924C FPGAs. This FPGA provides six four-quad GTH and twelve four-quad GTX high speed interfaces.

#### References

For more detailed information refer to: http://www.xilinx.com/products/silicon-devices/fpga/virtex-6/hxt.htm

#### **Board Power and Switch**

Figure 1-2 callouts [3, 4, 5]

The ML630 board is powered through two 4-pin DIN right angle type connectors J122 and J75 using the two 12V 15A AC-to-DC adapters included with the board.

Power can also be provided through J141 and J102 ATX hard disk type 4-pin power connectors. The DIN4 J122 and ATX J141 connectors are wired in parallel, as are J75 and J102.

**Note:** Use of a switchable "power bar" (multiple outlet power strip) is recommended for the two ML630 AC adapters. The two adapters can then be turned on and off simultaneously via the power bar on-off switch.

**Caution!** Only use two power supplies of the same type. Power the ML630 board through two connectors at the same time (J122 and J75 or J141 and J102, depending on power supply type). Do NOT apply power to all four power input connectors J122/J75 and J141/J102 at the same time. Doing so may damage the ML630 board and void the board warranty.

When the 12V AC adapters are plugged into the ML630 board and turned on via the multiple outlet AC power strip, 12 VDC is applied to the ML630 12V power planes, and green LED indicators (DS36 and DS49) adjacent to each DIN4 power connector illuminate.

The ML630 board U1 and U2 FPGA power regulators are turned on and off by the "soft" slide switch, SW1. When this switch is in the ON position, power is applied to the FPGAs and the green LEDs adjacent to each active regulator illuminate.

The FPGA U1 and part of FPGA U2 power system block diagram is shown in Figure 1-3. The circuit details may be found on the schematic pages 8 and 51 through 67 as noted in the various function blocks.



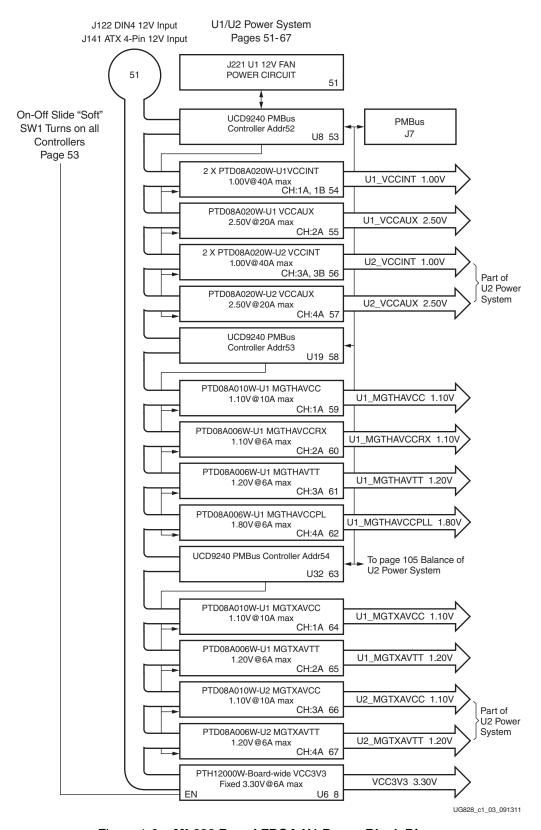



Figure 1-3: ML630 Board FPGA U1 Power Block Diagram



Part of the FPGA U2 power system block diagram is shown in, Figure 1-4. The circuit details may be found on the schematic, pages 103 through 109 as noted in the various function blocks.

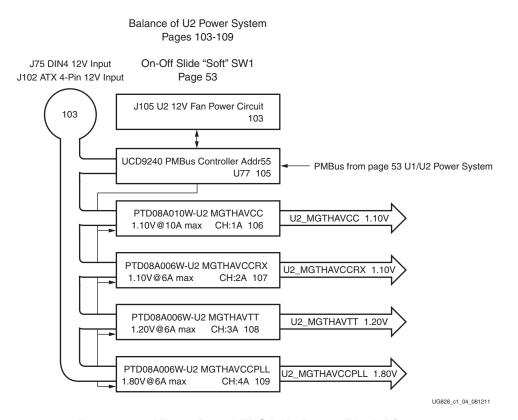



Figure 1-4: ML630 Board FPGA U2 Power Block Diagram



The ML630 board uses power regulators and PMBus compliant digital PWM system controllers from Texas Instruments to supply the U1 and U2 voltages listed in Table 1-1.

Table 1-1: ML630 Onboard Power System Devices

| Device           | Reference<br>Designator | Description                                                     | Power Rail Net Name | Typical<br>Voltage |
|------------------|-------------------------|-----------------------------------------------------------------|---------------------|--------------------|
| U1 and U2 Core   | Voltage Co              | ntroller and Regulators                                         |                     |                    |
| UCD9240PFC       | U8                      | PMBus compliant digital PWM system controller (address = 52)    | )                   |                    |
| PTD08A020W       | U10                     | Adjustable switching regulator 20A, 0.6V to 3.6V, 1 0f 2 Phases | U1_VCCINT           | 1.0V               |
| PTD08A020W       | U41                     | Adjustable switching regulator 20A, 0.6V to 3.6V, 2 0f 2 Phases | U1_VCCINT           | 1.0V               |
| PTD08A020W       | U12                     | Adjustable switching regulator 20A, 0.6V to 3.6V                | U1_VCCAUX           | 2.5V               |
| PTD08A020W       | U81                     | Adjustable switching regulator 20A, 0.6V to 3.6V, 1 0f 2 Phases | U2_VCCINT           | 1.0V               |
| PTD08A020W       | U82                     | Adjustable switching regulator 20A, 0.6V to 3.6V, 2 0f 2 Phases | U2_VCCINT           | 1.0V               |
| PTD08A020W       | U83                     | Adjustable switching regulator 20A, 0.6V to 3.6V                | U2_VCCAUX           | 2.5V               |
| U1 GTH Voltage   | Controller              | and Regulators                                                  |                     |                    |
| UCD9240PFC       | U19                     | PMBus compliant digital PWM system controller (address = 53)    | )                   |                    |
| PTD08A010W       | U3                      | Adjustable switching regulator 10A, 0.6V to 3.6V                | U1_MGTHAVCC         | 1.1V               |
| PTD08A006W       | U14                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U1_MGTXAVCCRX       | 1.1V               |
| PTD08A006W       | U20                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U1_MGTHAVTT         | 1.2V               |
| PTD08A006W       | U21                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U1_MGTXAVCCPLL      | 1.8V               |
| U1 and U2 GTX    | Voltage Cor             | ntroller and Regulators                                         |                     |                    |
| UCD9240PFC       | U32                     | PMBus compliant digital PWM system controller (address = 54)    | )                   |                    |
| PTD08A010W       | U4                      | Adjustable switching regulator 10A, 0.6V to 3.6V                | U1_MGTXAVCC         | 1.1V               |
| PTD08A010W       | U5                      | Adjustable switching regulator 10A, 0.6V to 3.6V                | U1_MGTXAVTT         | 1.2V               |
| PTD08A010W       | U73                     | Adjustable switching regulator 10A, 0.6V to 3.6V                | U2_MGTXAVCC         | 1.1V               |
| PTD08A010W       | U74                     | Adjustable switching regulator 10A, 0.6V to 3.6V                | U2_MGTXAVTT         | 1.2V               |
| U2 GTH Voltage   | Controller              | and Regulators                                                  |                     |                    |
| UCD9240PFC       | U77                     | PMBus compliant digital PWM system controller (address = 55)    | )                   |                    |
| PTD08A010W       | U72                     | Adjustable switching regulator 10A, 0.6V to 3.6V                | U2_MGTHAVCC         | 1.1V               |
| PTD08A006W       | U67                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U2_MGTXAVCCRX       | 1.1V               |
| PTD08A006W       | U68                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U2_MGTHAVTT         | 1.2V               |
| PTD08A006W       | U69                     | Adjustable switching regulator 6A, 0.6V to 3.6V                 | U2_MGTXAVCCPLL      | 1.8V               |
| Auxiliary 3.3V F | Power                   |                                                                 |                     |                    |
| PTH12000W        | U6                      | Adjustable switching regulator 6A, 1.2 to 5.5V                  | VCC3V3              | 3.3V               |



## Disabling FPGA Onboard Power

Figure 1-2 callout [6]

All TI controller PTD type voltage regulators are disabled by installing a jumper across pins 1–2 of header J289.

## FPGA Configuration

Figure 1-2 callout [16, 17, 18]

The FPGA is configured in JTAG mode only using one of the following options:

- Embedded USB JTAG circuit (uses USB-A-to-Mini-B cable)
- System ACE controller (utilizing a CompactFlash card loaded with bit files)

The FPGA Embedded JTAG option is chosen by connecting a USB A-to-Mini-B cable to ML630 USB Mini-B connector J20. The USB A end of the cable plugs into the user's PC, which hosts the Xilinx FPGA configuration software tool (either ChipScope™ Pro or Impact) which is then used to configure the two ML630 FPGAs.

The FPGAs can also be configured through the System ACE controller by setting the 3-bit configuration address DIP switches (SW3) to select one of eight bitstreams stored on a CompactFlash memory card plugged into socket U46 (see Table 1-2, page 17).

Upon power-on, the System ACE controller checks for the presence of a flash card and loads the FPGA configuration files from it, if present.

The JTAG chain of the board is illustrated in Figure 1-5. Each component (except the System ACE IC) with a JTAG interface has a bypass jumper which permits the component to be in the chain or bypassed.

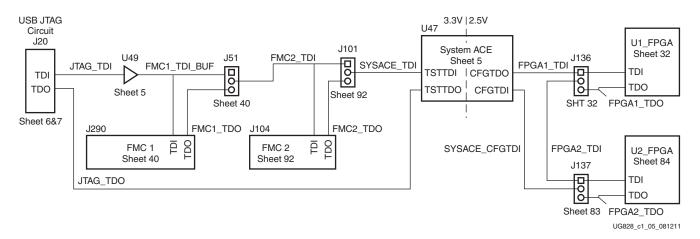



Figure 1-5: ML630 JTAG Chain Diagram

## System ACE Controller

Figure 1-2 callout [18]

The onboard System ACE controller (U47) allows storage of multiple configuration files on a CompactFlash card. These configuration files can be used to program the FPGAs. The CompactFlash card plugs into the CompactFlash card socket (U46) located directly above the System ACE controller (which is on the bottom side of the board).



## System ACE Controller Reset

Figure 1-2 callout [19]

Pressing pushbutton SW2 (RESET) resets the System ACE controller. Reset is an active-Low input.

## Configuration Address DIP Switches

Figure 1-2 callout [20]

DIP switch SW3 selects one of the eight configuration bitstream addresses in the CompactFlash memory card. The switch settings for selecting each address are shown in Table 1-2.

| Table 1-2: | Syste | em ACE SW3 DIP | Switch Configur | ration |
|------------|-------|----------------|-----------------|--------|
|            |       |                |                 |        |

| Address | ADR2<br>(POS1)   | ADR1<br>(POS2) | ADR0<br>(POS3)   |
|---------|------------------|----------------|------------------|
| 0       | O <sup>(1)</sup> | 0              | О                |
| 1       | О                | О              | C <sup>(2)</sup> |
| 2       | О                | С              | О                |
| 3       | О                | С              | С                |
| 4       | С                | О              | О                |
| 5       | С                | О              | С                |
| 6       | С                | С              | О                |
| 7       | С                | С              | С                |

#### Notes:

- 1. O indicates the open switch position (Logic 0).
- 2. C indicates the closed switch position (Logic 1).
- 3. The System ACE controller has internal pull-down resistors on its CFGADDR[2:0] pins.

#### References

More information on the System ACE controller is available in <u>DS080</u>, *System ACE CompactFlash Solution*.

## FPGA U1 PROG Pushbutton, INIT LED and DONE LED

Figure 1-2 callout [21]

Pressing the U1 PROG push button (SW5) grounds the active-Low program pin of the FPGA. The INIT LED (DS20) lights during FPGA initialization. The DONE LED (DS56) indicates the state of the DONE pin of the FPGA. When the DONE pin is High, the DONE LED lights indicating that the FPGA is successfully configured.



## FPGA U1 User LEDs, DIP and Pushbutton Switches

Figure 1-2 callout [22]

DS10 through DS17 are eight active-High LEDs that are connected to user I/O pins on FPGA U1 as shown in Table 1-3. These LEDs can be used to indicate status or any other purpose determined by the user.

Table 1-3: FPGA U1 User LEDs

| FPGA U1 Pin | Net Name     | Reference<br>Designator |
|-------------|--------------|-------------------------|
| K33         | U1_USER_LED1 | DS17                    |
| L33         | U1_USER_LED2 | DS16                    |
| A37         | U1_USER_LED3 | DS15                    |
| B37         | U1_USER_LED4 | DS14                    |
| B36         | U1_USER_LED5 | DS13                    |
| B35         | U1_USER_LED6 | DS12                    |
| A35         | U1_USER_LED7 | DS11                    |
| A34         | U1_USER_LED8 | DS10                    |

## User DIP Switches (Active High)

Figure 1-2 callout [22]

FPGA U1 DIP switch SW7 provides a set of eight active-High switches that are connected to user I/O pins on the FPGA as shown in Table 1-4. These switched signals can be used to set control bits or any other purpose determined by the user.

Table 1-4: FPGA U1 User DIP Switches

| FPGA U1 Pin Net Name |             | Reference<br>Designator |
|----------------------|-------------|-------------------------|
| J20                  | U1_USER_SW1 |                         |
| K21                  | U1_USER_SW2 |                         |
| P21                  | U1_USER_SW3 |                         |
| R21                  | U1_USER_SW4 | SW7                     |
| G20                  | U1_USER_SW5 | 3007                    |
| H21                  | U1_USER_SW6 |                         |
| E20                  | U1_USER_SW7 |                         |
| F20                  | U1_USER_SW8 |                         |



## User Push Buttons (Active High)

Figure 1-2 callout [22]

SW4, SW6, SW8 and SW9 are active-High user pushbuttons that are connected to user I/O pins on FPGA U1 as shown in Table 1-5. These switches can be used for any purpose determined by the user.

Table 1-5: FPGA U1 User Pushbuttons

| FPGA U1 Pin | Net Name    | Reference<br>Designator |
|-------------|-------------|-------------------------|
| H26         | U1_USER_PB1 | SW4                     |
| J26         | U1_USER_PB2 | SW6                     |
| N24         | U1_USER_PB3 | SW8                     |
| N23         | U1_USER_PB4 | SW9                     |

#### FPGA U1 User GPIO Header

Figure 1-2 callout [23]

A standard 2 x 6, 100-mil pitch header (J285) brings out six FPGA I/Os for test purposes. Table 1-6 lists these pins. J285 odd pin numbers are wired to GND (ground).

Table 1-6: FPGA U1 User GPIO Header J285

| FPGA U1 Pin | Net Name     | J285 Pin |
|-------------|--------------|----------|
| J35         | U1_USER_IO_1 | 2        |
| K35         | U1_USER_IO_2 | 4        |
| D35         | U1_USER_IO_3 | 6        |
| E35         | U1_USER_IO_4 | 8        |
| P35         | U1_USER_IO_5 | 10       |
| P34         | U1_USER_IO_6 | 12       |

## FPGA U1 USB to UART Bridge

Figure 1-2 callout [24]

Communications between the ML630 board FPGA U1 and a host computer are accomplished through a USB cable connected to J54. Control is provided by U26, a USB to UART bridge (Silicon Laboratories CP2103). Table 1-7 lists the pin assignments and signals for the USB connector J54.

Table 1-7: : J54 USB Mini-B Connector Pin Assignments and Signals

| J54 Pin | Signal Name Description |                                                 |
|---------|-------------------------|-------------------------------------------------|
| 1       | VBUS                    | +5V from host system                            |
| 2       | U1_USB_D_N              | Bidirectional differential serial data (N-side) |



Table 1-7: : J54 USB Mini-B Connector Pin Assignments and Signals (Cont'd)

| J54 Pin | Signal Name | Description                                     |
|---------|-------------|-------------------------------------------------|
| 3       | U1_USB_D_P  | Bidirectional differential serial data (P-side) |
| 4       | ID          | Not used                                        |

The CP2103 supports an I/O voltage range of 2.5V on the ML630 board. The connections between FPGA U1 and CP2103 should use the LVCMOS25 I/O standard. UART IP (for example, Xilinx® XPS UART Lite) must be implemented in the FPGA logic. FPGA U1 supports the USB to UART bridge using four signal pins:

- Transmit (TX)
- Receive (RX)
- Request to Send (RTS)
- Clear to Send (CTS)

Connections of these signals between the FPGA and the CP2103 at U26 are listed in Table 1-8.

Table 1-8: FPGA U1 to U26 (CP2103 Bridge) Connections

| FPGA U1 Pin | FPGA Function | Net Name     | U26 Pin | U26 Function  |
|-------------|---------------|--------------|---------|---------------|
| P11         | RTS, output   | U1_USB_CTS_I | 22      | CTS, input    |
| P10         | CTS, input    | U1_USB_RTS_O | 23      | RTS, output   |
| P10         | TX, data out  | U1_USB_RXD_I | 24      | RXD, data in  |
| E10         | RX, data in   | U1_USB_TXD_O | 25      | TXD, data out |

The bridge device also provides as many as four GPIO signals that can be defined by the user for status and control information (see Table 1-9).

Table 1-9: FPGA U1 to U26 (CP2103 Bridge) User GPIO Connections

| FPGA U1 Pin | Net Name      | U26 Pin |
|-------------|---------------|---------|
| L10         | U1_USB_GPIO_0 | 19      |
| M11         | U1_USB_GPIO_1 | 18      |
| D10         | U1_USB_GPIO_2 | 17      |
| E11         | U1_USB_GPIO_3 | 16      |

A royalty-free software driver named Virtual COM Port (VCP) is available from Silicon Laboratories. This driver permits the CP2103 USB to UART bridge to appear as a COM port to the host computer communications application software (for example, HyperTerminal or TeraTerm). The VCP driver must be installed on the host computer prior to establishing communications with the ML630 board.

#### References

More information on the Silicon Labs CP2103 USB-to-UART bridge is available at: http://www.silabs.com/products/interface/usbtouart/Pages/default.aspx.



#### FPGA U1 200 MHz 2.5V LVDS Oscillator

Figure 1-2 callout [25]

The ML630 board has one SiTime 2.5V LVDS differential fixed 200 MHz oscillator per FPGA. Oscillator U22 (located on the bottom of the board) is connected to FPGA U1 as listed in Table 1-10.

Table 1-10: FPGA U1 LVDS Oscillator U22 Global Clock Connections

| FPGA U1 Pin | Net Name      | U22 Pin |
|-------------|---------------|---------|
| J33         | U1_LVDS_OSC_P | 4       |
| H33         | U1_LVDS_OSC_N | 5       |

#### References

More information on the SiTime SI9102AI oscillator is available at: http://www.sitime.com/products/differential-oscillators/sit9102.

## FPGA U2 PROG Push Button, INIT LED and DONE LED

Figure 1-2 callout [26]

Pressing the U2 PROG pushbutton (SW11) grounds the active-Low program pin of the FPGA. The INIT LED (DS54) lights during FPGA initialization. The DONE LED (DS29) indicates the state of the DONE pin of the FPGA. When the DONE pin is High, the DONE LED lights indicating that the FPGA is successfully configured.

## FPGA U2 User LEDs, DIP and Pushbutton Switches

Figure 1-2 callout [27]

DS30 through DS35, DS37, and DS38 are eight active-High LEDs that are connected to user I/O pins on FPGA U2 as shown in Table 1-11. These LEDs can be used to indicate status or any other purpose determined by the user.

Table 1-11: FPGA U2 User LEDs

| FPGA U2 Pin | Net Name     | Reference<br>Designator |
|-------------|--------------|-------------------------|
| K33         | U2_USER_LED1 | DS38                    |
| L33         | U2_USER_LED2 | DS37                    |
| A37         | U2_USER_LED3 | DS35                    |
| B37         | U2_USER_LED4 | DS34                    |
| B36         | U2_USER_LED5 | DS33                    |
| B35         | U2_USER_LED6 | DS32                    |
| A35         | U2_USER_LED7 | DS31                    |
| A34         | U2_USER_LED8 | DS30                    |



## FPGA U2 User DIP Switches (Active High)

Figure 1-2 callout [27]

FPGA U1 DIP switch SW16 provides a set of eight active-High switches that are connected to user I/O pins on the FPGA as shown in Table 1-12. These switched signals can be used to set control bits or any other purpose determined by the user.

Table 1-12: FPGA U2 User DIP Switches

| FPGA U2 Pin | Net Name    | Reference<br>Designator |
|-------------|-------------|-------------------------|
| J20         | U2_USER_SW1 |                         |
| K21         | U2_USER_SW2 |                         |
| P21         | U2_USER_SW3 |                         |
| R21         | U2_USER_SW4 | SW16                    |
| G20         | U2_USER_SW5 | 30010                   |
| H21         | U2_USER_SW6 |                         |
| E20         | U2_USER_SW7 |                         |
| F20         | U2_USER_SW8 |                         |

## User Push Buttons (Active High)

Figure 1-2 callout [27]

SW12, SW13, SW14 and SW15 are active-High user pushbuttons that are connected to user I/O pins on FPGA U2 as shown in Table 1-13. These switches can be used for any purpose determined by the user.

Table 1-13: FPGA U2 User Pushbuttons

| FPGA U2 Pin | Net Name    | Reference<br>Designator |
|-------------|-------------|-------------------------|
| H26         | U2_USER_PB1 | SW12                    |
| J26         | U2_USER_PB2 | SW13                    |
| N24         | U2_USER_PB3 | SW14                    |
| N23         | U2_USER_PB4 | SW15                    |



## FPGA U2 User GPIO Header

Figure 1-2 callout [28]

A standard 2 x 6, 100-mil pitch header (J103) brings out six FPGA I/Os for test purposes. Table 1-14 lists these pins. J103 odd pin numbers are wired to GND (ground).

Table 1-14: FPGA U2 User GPIO Header J103

| FPGA U1 Pin | Net Name     | J103 Pin |
|-------------|--------------|----------|
| J35         | U2_USER_IO_1 | 2        |
| K35         | U2_USER_IO_2 | 4        |
| D35         | U2_USER_IO_3 | 6        |
| E35         | U2_USER_IO_4 | 8        |
| P35         | U2_USER_IO_5 | 10       |
| P34         | U2_USER_IO_6 | 12       |

## FPGA U2 USB to UART Bridge

Figure 1-2 callout [29]

Communications between the ML630 board FPGA U2 and a host computer are accomplished through a USB cable connected to J106. Control is provided by U79, a USB to UART bridge (Silicon Laboratories CP2103). Table 1-15 lists the pin assignments and signals for the USB connector J106.

Table 1-15: J106 USB Mini-B Connector Pin Assignments and Signals

| J106 Pin | Signal Name | Description                                     |
|----------|-------------|-------------------------------------------------|
| 1        | VBUS        | +5V from host system                            |
| 2        | U2_USB_D_N  | Bidirectional differential serial data (N-side) |
| 3        | U2_USB_D_P  | Bidirectional differential serial data (P-side) |
| 4        | ID          | Not used8                                       |

The CP2103 supports an I/O voltage range of 2.5V on the ML630 board. The connections between FPGA U2 and CP2103 should use the LVCMOS25 I/O standard. UART IP (for example, Xilinx® XPS UART Lite) must be implemented in the FPGA logic. FPGA U2 supports the USB to UART bridge using four signal pins:

- Transmit (TX)
- Receive (RX)
- Request to Send (RTS)
- Clear to Send (CTS)

Connections of these signals between the FPGA and the CP2103 at U79 are listed in Table 1-16.



Table 1-16: FPGA U2 to U79 (CP2103 Bridge) Connections

| FPGA U2 Pin | FPGA Function | Net Name     | U79 Pin | U79 Function  |
|-------------|---------------|--------------|---------|---------------|
| P11         | RTS, output   | U2_USB_CTS_I | 22      | CTS, input    |
| P10         | CTS, input    | U2_USB_RTS_O | 23      | RTS, output   |
| F10         | TX, data out  | U2_USB_RXD_I | 24      | RXD, data in  |
| E10         | RX, data in   | U2_USB_TXD_O | 25      | TXD, data out |

The bridge device also provides as many as four GPIO signals that can be defined by the user for status and control information (see Table 1-17).

Table 1-17: FPGA U2 to U79 (CP2103 Bridge) User GPIO Connections

| FPGA U2 Pin | Net Name      | U79 Pin |
|-------------|---------------|---------|
| L10         | U2_USB_GPIO_0 | 19      |
| M11         | U2_USB_GPIO_1 | 18      |
| D10         | U2_USB_GPIO_2 | 17      |
| E11         | U2_USB_GPIO_3 | 16      |

A royalty-free software driver named Virtual COM Port (VCP) is available from Silicon Laboratories. This driver permits the CP2103 USB to UART bridge to appear as a COM port to the host computer communications application software (for example, HyperTerminal or TeraTerm). The VCP driver must be installed on the host computer prior to establishing communications with the ML630 board.

#### References

More information on the Silicon Labs CP2103 USB-to-UART bridge is available at: http://www.silabs.com/products/interface/usbtouart/Pages/default.aspx.

#### FPGA U2 200 MHz 2.5V LVDS Oscillator

Figure 1-2 callout [30]

Oscillator U63, located on the bottom of the board, is connected to FPGA U2 global clock inputs. Table 1-18 lists FPGA U2 pin connections to the LVDS oscillator U63.

Table 1-18: FPGA U2 LVDS Oscillator U63 Global Clock Connections

| FPGA U2 Pin | Net Name      | U63 Pin |
|-------------|---------------|---------|
| AR33        | U2_LVDS_OSC_P | 4       |
| AT33        | U2_LVDS_OSC_N | 5       |

#### References

More information on the SiTime SI9102AI oscillator is available at: http://www.sitime.com/products/differential-oscillators/sit9102.



### FPGA U1 FCI Airmax Interlaken Connectors

Figure 1-2 callout [31, 32, 34]

The ML630 board provides four sets of FCI Airmax male/female (plug/receptacle) connector pairs implementing the Interlaken protocol.

**Note:** The Interlaken protocol definition and recommended connector pinouts can be found in the following documents located on the Interlaken Alliance website (<a href="http://www.interlakenalliance.com">http://www.interlakenalliance.com</a>): Protocol: Interlaken Protocol Definition v1.x and Connector Pinouts: Interlaken Interop Recommendations v1.x. The Protocol Definition document also discusses the flow control functions provided by the TX and RX FC\_CLK, FC\_DATA and FC\_SYNC connector pins.

Three sets of connector pairs (P1/J1, P2/J2, and P3/J3) are wired to FPGA U1. Table 1-19 through Table 1-24 show FPGA U1 to FCI connector details. Refer to the block diagram on the ML630 schematic, page 2, for an overview of the connectivity shown in these tables.