

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

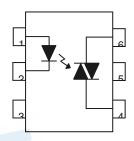
DATASHEET

6 PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTOCOUPLER EL301X, EL302X, EL305X Series

Features:

- Peak breakdown voltage
- 250V: EL301X
- 400V: EL302X
- 600V: EL305X
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact dual-in-line package
- Compliance with EU REACH
- The product itself will remain within RoHS compliant version
- UL and cUL approved (No. E214129)
- VDE approved (No.132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Description


The EL301X, EL302X and EL305X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon random phase photo Triac.

They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations.

Applications

- Solenoid/valve controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 to 240Vac peripherals
- Incandescent lamp dimmers
- Temperature controls
- Motor controls

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Terminal
- 5. Substrate (do not connect)
- 6. Terminal

Absolute Maximum Ratings (Ta=25°C)

Parameter			Symbol	Rating	Unit
Input	Forward current		I _F	60	mA
	Reverse voltage		V_{R}	6	V
	Power dissipation		D	100	mW
Derating factor (above $T_a = 85^{\circ}C$)			P _D -	3.8	mW /°C
Output		EL301X		250	
	Off-state Output Terminal Voltage	EL302X	V _{DRM}	400	V
		EL305X		600	_
	Peak Repetitive Surge (pw=100µs,120pps)	Current	I _{TSM}	1	А
	On-State RMS Current		I _{T(RMS)}	100	mA
	Power dissipation		D	300	mW
	Derating factor (above	$T_a = 85^{\circ}C$)	P _C -	7.4	mW/℃
Total power dissipation			Ртот	330	mW
Isolation voltage*1			V _{ISO}	5000	Vrms
Operating	g temperature		T _{OPR}	-55 to 100	°C
Storage temperature			T _{STG}	-55 to 125	°C
Soldering Temperature*2			T _{SOL}	260	°C

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2&3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

Electro-Optical Characteristics (Ta=25°C unless specified otherwise)

Input

Parameter	Symbol	Min.	Typ.*1	Max.	Unit	Condition
Forward Voltage	VF	-	1.18	1.5	V	I _F = 10mA
Reverse Leakage current	I _R	-	-	10	μΑ	$V_R = 6V$

Output

Parameter		Symbol	Min.	Typ.*1	Max.	Unit	Condition
Peak Blocking Current		I _{DRM}	-	-	100	nA	$V_{DRM} = Rated V_{DRM}$ $I_F = 0mA^{*2}$
Peak On-state Voltage		V_{TM}	-	-	2.5	V	I _{TM} =100mA peak, I _F =Rated I _{FT}
Critical Rate of Rise off-state	EL301X EL302X	_ dv/dt -	-	100	-	V/µs	V _{PEAK} =Rated V _{DRM} , I _F =0 (Fig. 8)*3
Voltage	EL305X	av/at =	1000	-	-	ν, μο	V _{PEAK} =400V, I _F =0 (Fig. 8)

Notes:

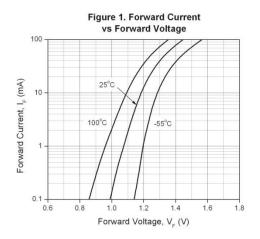
^{*1.}Typical values at Ta = 25°C

^{*2.} Test voltage must be applied within dv/dt rating.

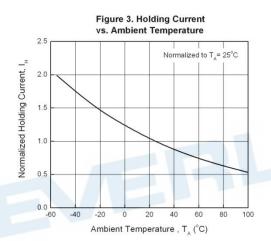
^{*3.} This is static dv/dt. See Figure 8 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

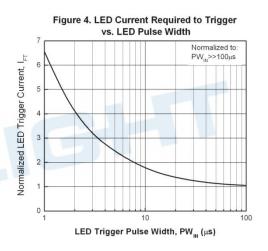
Transfer Characteristics

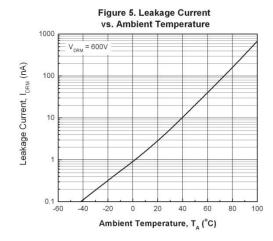
Parame	eter	Symbol	Min.	Typ.*1	Max.	Unit	Condition
	EL3020				30		
LED Trigger — Current	EL3010 EL3021 EL3051	- I _{FT}	-	-	15	mA	Main terminal Voltage=3V ^{*4}
	EL3011 EL3022 EL3052		-	-	10		
	EL3012 EL3023 EL3053		-	-	5		
Holding Current		I _H	-	250	-	μΑ	


Notes:

^{*4.} All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (30 mA for EL3020, 15 mA for EL3010/EL3021/EL3051,10 mA for EL3011/EL3022/EL3052, 5 mA for EL3012/EL3023/EL3053) and absolute maximum I_F (60 mA).






Typical Electro-Optical Characteristics Curves

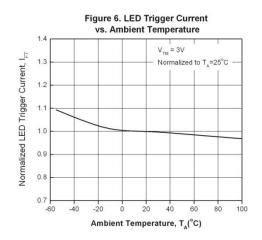


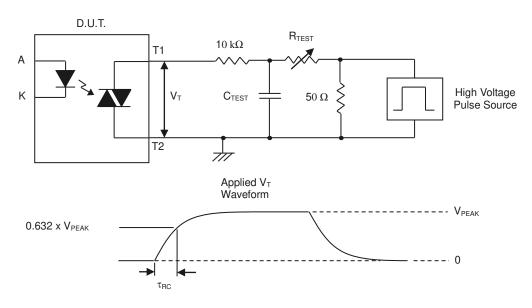
Figure 7. Off-State Output Terminal Voltage vs. Ambient Temperature

1.4

Normalized to T_A=25°C

1.3

1.0


0.9

0.8

Ambient Temperature, T_A (°C)

Figure 8. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_{T} is monitored using a x100 scope probe. By varying R_{TEST} , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.

$$dv/dt = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$

For example, V_{PEAK} = 400V for EL302X series. The dv/dt value is calculated as follows:

$$dv/dt = \frac{0.632 \times 400}{\tau_{RC}} = \frac{252.8}{\tau_{RC}}$$

Order Information

Part Number

EL301XY(Z)-V or EL302XY(Z)-V or EL305XY(Z)-V

Notes

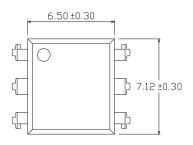
X = Part No. for EL301x (0, 1 or 2).

X = Part No. for EL302x (0,1, 2 or 3)

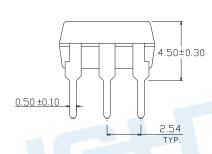
X = Part No. for EL305x (1, 2 or 3)

Y = Lead form option (S, S1, M or none)

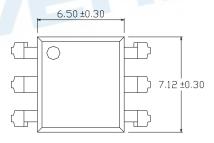
Z = Tape and reel option (TA, TB or none).

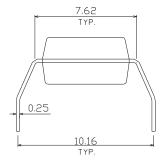

V = VDE safety approved (optional)

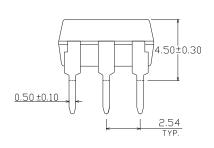
Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S	Surface mount lead form	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel



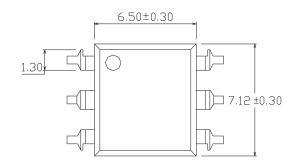
Package Dimension (Dimensions in mm)

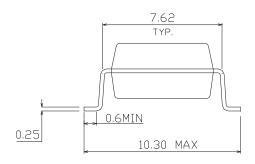

Standard DIP Type

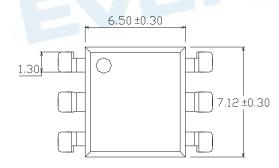


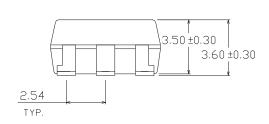


Option M Type

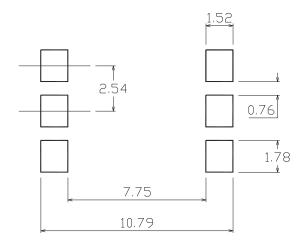


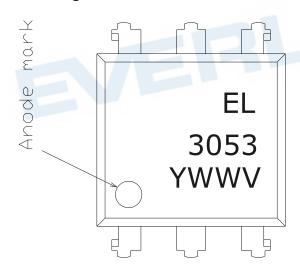



Option S Type



Option S1 Type

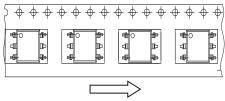



Recommended pad layout for surface mount leadform

Notes

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

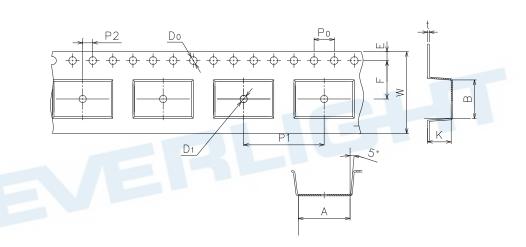
Device Marking


Notes

EL denotes EVERLIGHT
3053 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

Tape & Reel Packing Specifications

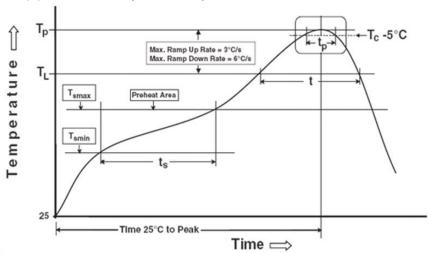
Option TA


Direction of feed from reel

Option TB

Direction of feed from reel

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.8±0.1	7.5±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	K

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Notes Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T_{smin}) 150 °C

Temperature max (T_{smax}) 200°C

Time $(T_{smin}$ to $T_{smax})$ (ts) 60-120 seconds

Average ramp-up rate $(T_{smax}$ to $T_p)$ 3 °C/second max

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t_L)

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

6°C /second max.

Time 25°C to peak temperature

8 minutes max.

Reflow times

3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.