: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

White LED Step-Up Regulator

The EL7513 is a constant current boost regulator specially designed for driving white LEDs. It can drive 4 LEDs in series or up to 12 LEDs in parallel/series configuration and achieves efficiency up to 91%.

The brightness of the LEDs is adjusted through a voltage level on the CNTL pin. When the level falls below 0.1 V , the chip goes into shut-down mode and consumes less than $1 \mu \mathrm{~A}$ of supply current for V_{IN} less than 5.5 V .

The EL7513 is available in the 8 Ld TSOT and 8 Ld MSOP packages. The TSOT package is just 1 mm high, compared to 1.45 mm for the standard SOT23 package.

Features

- 2.6V to 13.2 V input voltage
- 18 V maximum output voltage
- Drives up to 12 LEDs
- 1 MHz switching frequency
- Up to 91\% efficiency
- $1 \mu \mathrm{~A}$ maximum shut-down current
- Dimming control
- 8 Ld TSOT and 8 Ld MSOP packages
- Pb-free available (RoHS compliant)

Applications

- PDAs
- Cellular phones
- Digital cameras
- White LED backlighting

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
EL7513IWT-T7*	9	-40 to +85	8 Ld TSOT Tape and Reel	MDP0049
EL7513IWT-T7A*	9	-40 to +85	8 Ld TSOT Tape and Reel	MDP0049
EL7513IWTZ-T7* (See Note)	BAAA	-40 to +85	8 Ld TSOT Tape and Reel (Pb-Free)	MDP0049
EL7513IWTZ-T7A* (See Note)	BAAA	-40 to +85	8 Ld TSOT Tape and Reel (Pb-Free)	MDP0049
EL7513IY	d	-40 to +85	8 Ld MSOP	MDP0043
EL7513IY-T7*	d	-40 to +85	8 Ld MSOP Tape and Reel	MDP0043
EL7513IY-T13*	d	-40 to +85	8 Ld MSOP Tape and Reel	MDP0043
EL7513IYZ (See Note)	BAABA	-40 to +85	8 Ld MSOP (Pb-Free)	MDP0043
EL7513IYZ-T7* (See Note)	BAABA	-40 to +85	8 Ld MSOP Tape and Reel (Pb-Free)	MDP0043
$\begin{aligned} & \text { EL7513IYZ-T13* } \\ & \text { (See Note) } \end{aligned}$	BAABA	-40 to +85	8 Ld MSOP Tape and Reel (Pb-Free)	MDP0043

*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Pinouts

EL7513
(8 LD TSOT)
TOP VIEW

Typical Connection

SGND to PGND . -0.3 V to +0.3 V Storage Temperature . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Operating Temperature $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Pb-Free Reflow Profile. see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}, \mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{H}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{R}_{1}=5 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IN }}$	Input Voltage		2.6		13.2	V
$\mathrm{l}_{\text {Q1 }}$	Total Input Current at Shut-down	$\mathrm{V}_{\text {CNTL }}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {Q1 }}$	Quiescent Supply Current at V_{O} Pin	$\mathrm{V}_{\text {CNTL }}=1 \mathrm{~V}$, load disconnected		1	1.5	mA
ICOMP	COMP Pin Pull-up Current	COMP connected to SGND		11	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {COMP }}$	COMP Voltage Swing		0.5	1.5	2.5	V
ICNTL	CNTL Shut-down Current	CNTL $=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CNTL1 }}$	Chip Enable Voltage		240			mV
$\mathrm{V}_{\text {CNTL2 }}$	Chip Disable Voltage				100	mV
IOUT_ACCURACY	$\mathrm{V}_{\text {CNTL }}=1 \mathrm{~V}$	$\mathrm{V}_{\text {CNTL }}=1 \mathrm{~V}$	14	15	16	mA
V OUT1	Over-voltage Threshold	$V_{\text {OUT }}$ rising	17	18	19	V
$V_{\text {OUT2 }}$	Over-voltage Threshold	$V_{\text {OUT }}$ falling, with resistive load	15	16	17.5	V
ILX	MOSFET Current Limit		500			mA
R ${ }_{\text {DS_ON }}$	MOSFET On-resistance			0.7		Ω
lıEAK	MOSFET Leakage Current	$\mathrm{V}_{\mathrm{CNTL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LX}}=12 \mathrm{~V}$			1	$\mu \mathrm{A}$
F_{S}	Switching Frequency		800	1000	1200	kHz
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Ratio	$\mathrm{V}_{\mathrm{CNTL}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	85	90		\%
ICS	CS Input Bias Current				1	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{O}} / \Delta \mathrm{V}_{\text {IN }}$	Line Regulation	$\mathrm{V}_{\mathrm{IN}}=2.6 \mathrm{~V}-5.5 \mathrm{~V}$		0.03		\%/V

Pin Descriptions

$\mathbf{8}$ LD TSOT	8 LD MSOP	PIN NAME	DESCRIPTION
1	7	COMP	Compensation pin. A compensation cap (4700pF to $1 \mu \mathrm{FF})$ is normally connected between this pin and SGND.
2	8	CNTL	Control pin for dimming and shut-down. A voltage between 250mV and 5.5V controls the brightness, and less than 100 mV shuts down the converter.
3	5	VOUT	Output voltage sense. Use for over voltage protection.
4	6	LX	Inductor connection pin. The drain of internal MOSFET.
5	3	PGND	Power Ground pin. The source of internal MOSFET.
6	4	SGND	Signal Ground. Ground pin for internal control circuitry. Needs to connect to PGND at only one point.
7	1	CS	Current sense pin. Connect to sensing resistor to set the LED bias current.
8	2	VIN	Power supply for internal control circuitry.

Block Diagram

Typical Performance Curves

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 1. SWITCHING FREQUENCY vs V_{IN}

FIGURE 2. QUIESCENT CURRENT

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 3. ILED vs $\mathrm{V}_{\mathrm{CNTL}}$

FIGURE 5A. 2 LEDs IN A SERIES

FIGURE 6A. 3 LEDS IN A SERIES

FIGURE 4. ILED vs $\mathrm{V}_{\text {IN }}$

FIGURE 5B. EFFICIENCY vs Io
FIGURE 5.

FIGURE 6B. EFFICIENCY vs Io
FIGURE 6.

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 7A. 4 LEDs IN A SERIES

FIGURE 7B. EFFICIENCY vs Io
FIGURE 7.

FIGURE 8B. EFFICIENCY vs Io
FIGURE 8.

FIGURE 9A. 2 LEGS OF 3 LEDs IN A SERIES

FIGURE 9.

FIGURE 9B. EFFICIENCY vs Io

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 10A. 2 LEGS OF 4 LEDs IN A SERIES

FIGURE 11A. 3 LEGS OF 2 LEDs IN A SERIES

FIGURE 12A. 3 LEGS OF 3 LEDs IN A SERIES

FIGURE 10B. EFFICIENCY vs lo
FIGURE 10.

FIGURE 11B. EFFICIENCY vs Io
FIGURE 11.

FIGURE 12.

FIGURE 12B. EFFICIENCY vs Io

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 13A. 3 LEGS of 4 LEDs in a SERIES

FIGURE 13B. EFFICIENCY vs lo

Waveforms

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 14. START-UP

FIGURE 16. TRANSIENT RESPONSE

FIGURE 15. SHUT-DOWN

FIGURE 17. CONTINUOUS CONDUCTION MODE

Waveforms (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 18. DISCONTINUOUS CONDUCTION MODE

Detailed Description

The EL7513 is a constant current boost regulator specially designed for driving white LEDs. It can drive up to 4 LEDs in series or 12 LEDs in parallel/series configuration and achieves efficiency up to 91%.

The brightness of the LEDs is adjusted through a voltage level on the CNTL pin. When the level falls below 0.1 V , the chip goes into shut-down mode and consumes less than $1 \mu \mathrm{~A}$ of current for V_{IN} less than 5.5 V .

Steady-State Operation

EL7513 is operated in constant frequency PWM. The switching is around 1 MHz . Depending on the input voltage, the inductance, the type of LEDs driven, and the LED's current, the converter operates at either continuous conduction mode or discontinuous conduction mode (see waveforms). Both are normal.

Brightness Control

LED's current is controlled by the voltage level on CNTL pin ($\mathrm{V}_{\mathrm{CNTL}}$). This voltage can be either a DC or a PWM signal with frequency less than 200 Hz (for $\mathrm{C}_{3}=4700 \mathrm{pF}$). When a higher frequency PWM is used, an RC filter is recommended before the CNTL pin (see Figure 20).

FIGURE 20. PWM BRIGHTNESS CONTROL

FIGURE 19. OVER VOLTAGE PROTECTION (LED DISCONNECTED)

The relationship between the LED current and CNTL voltage level is as follows:
$\mathrm{I}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{CNTL}}}{13.33 \times \mathrm{R}_{1}}$

When R_{1} is 5Ω, 1 V of $\mathrm{V}_{\mathrm{CNTL}}$ conveniently sets $\mathrm{I}_{\mathrm{LED}}$ to 15 mA . The range of $\mathrm{V}_{\mathrm{CNTL}}$ is 250 mV to 5.5 V .

Shut-Down

When $\mathrm{V}_{\mathrm{CNTL}}$ is less than 100 mV , the converter is in shutdown mode. The max current consumed by the chip is less than $1 \mu \mathrm{~A}$ for $\mathrm{V}_{\text {IN }}$ less than 5.5 V .

Over-Voltage Protection

When an LED string is disconnected from the output, V_{O} will continue to rise because of no current feedback. When V_{O} reaches 18 V (nominal), the chip will shut down. The output voltage will drop. When V_{O} drops below 16 V (nominal), the chip will boost output voltage again until it reaches 18 V . This hiccough continues until LED is applied or converter is shut down.

When designing the converter, caution should be taken to ensure the highest operating LED voltage does not exceed 17 V , the minimum shut-down voltage. There is no external component required for this function.

Component Selection

The input and output capacitors are not very important for the converter to operate normally. The input capacitance is normally $0.22 \mu \mathrm{~F}-4.7 \mu \mathrm{~F}$ and output capacitance $0.22 \mu \mathrm{~F}-1 \mu \mathrm{~F}$. Higher capacitance is allowed to reduce the voltage/current ripple, but at added cost. Use X5R or X7R type (for its good temperature characteristics) of ceramic capacitors with correct voltage rating and maximum height.

When choosing an inductor, make sure the inductor can handle the average and peak currents giving by following formulas (80% efficiency assumed):
$\mathrm{I}_{\mathrm{LAVG}}=\frac{\mathrm{I}_{\mathrm{O}} \times \mathrm{V}_{\mathrm{O}}}{0.8 \times \mathrm{V}_{\mathrm{IN}}}$
$I_{\text {LPK }}=I_{\text {LAVG }}+\frac{1}{2} \times \Delta I_{\mathrm{L}}$
$\Delta I_{L}=\frac{V_{I N} \times\left(V_{O}-V_{I N}\right)}{L \times V_{O} \times F_{S}}$
where:

- $\Delta \mathrm{L}_{\mathrm{L}}$ is the peak-to-peak inductor current ripple in Ampere
- Linductance in $\mu \mathrm{H}$
- FS switching frequency, typical 1 MHz

A wide range of inductance $(6.8 \mu \mathrm{H}-68 \mu \mathrm{H})$ can be used for the converter to function correctly. For the same series of inductors, the lower inductance has lower DC resistance (DCR), which has less conducting loss. But the ripple current is bigger, which generates more RMS current loss. Figure 11 shows the efficiency of the demo board under different inductance for a specific series of inductor. For optimal efficiency in an application, it is a good exercise to check several adjacent inductance values of your preferred series of inductors.

For the same inductance, higher overall efficiency can be obtained by using lower DCR inductor.

FIGURE 21. EFFICIENCY OF DIFFERENT INDUCTANCE (4 LEDs IN A SERIES)

The diode should be Schottky type with minimum reverse voltage of 20 V . The diode's peak current is the same as inductor's peak current, the average current is I_{O}, and RMS current is:
$I_{\text {DRMS }}=\sqrt{I_{\text {LAVG }} \times I_{O}}$
Ensure the diode's ratings exceed these current requirements.

White LED Connections

One leg of LEDs connected in series will ensure the uniformity of the brightness. 18 V maximum voltage enables 4 LEDs can be placed in series.
However, placing LEDs into series/parallel connection can give higher efficiency as shown in the efficiency curves. One of the ways to ensure the brightness uniformity is to prescreen the LEDs.

PCB Layout Considerations

The layout is very important for the converter to function properly. Power Ground ($\frac{1}{\square}$) and Signal Ground ($\stackrel{\perp}{ \pm}$) should be separated to ensure the high pulse current in the power ground does not interference with the sensitive signals connected to Signal Ground. Both grounds should only be connected at one point right at the chip. The heavy current paths ($\mathrm{V}_{I N}-\mathrm{L}-\mathrm{L}_{\mathrm{X}}$ pin-PGND, and $\mathrm{V}_{\mathrm{IN}^{-L}}-\mathrm{D}-\mathrm{C}_{2}-\mathrm{PGND}$) should be as short as possible.

The trace connected to the CS pin is most important. The current sense resister R_{1} should be very close to the pin When the trace is long, use a small filter capacitor close to the CS pin.
The heat of the IC is mainly dissipated through the PGND pin. Maximizing the copper area around the plane is preferable. In addition, a solid ground plane is always helpful for the EMI performance.
The demo board is a good example of layout based on the principle. Please refer to the EL7513 Application Brief for the layout.

TSOT Package Family

MDP0049

TSOT PACKAGE FAMILY

	MILLIMETERS			
SYMBOL	TSOT5	TSOT6	TSOT8	TOLERANCE
A	1.00	1.00	1.00	Max
A1	0.05	0.05	0.05	± 0.05
A2	0.87	0.87	0.87	± 0.03
b	0.38	0.38	0.29	± 0.07
c	0.127	0.127	0.127	$+0.07 /-0.007$
D	2.90	2.90	2.90	Basic
E	2.80	2.80	2.80	Basic
E1	1.60	1.60	1.60	Basic
e	0.95	0.95	0.65	Basic
e1	1.90	1.90	1.95	Basic
L	0.40	0.40	0.40	± 0.10
L1	0.60	0.60	0.60	Reference
ddd	0.20	0.20	0.13	-
N	5	6	8	Reference

Rev. B 2/07
NOTES:

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.15 mm maximum per side are not included.
3. This dimension is measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin \#1 I.D. will be located within the indicated zone (TSOT6 AND TSOT8 only).
6. TSOT5 version has no center lead (shown as a dashed line).

Mini SO Package Family (MSOP)

MDP0043
MINI SO PACKAGE FAMILY

SYMBOL	MILLIMETERS			
	MSOP8	MSOP10	TOLERANCE	
A	1.10	1.10	Max.	-
A1	0.10	0.10	± 0.05	-
A2	0.86	0.86	± 0.09	-
b	0.33	0.23	$+0.07 /-0.08$	-
c	0.18	0.18	± 0.05	-
D	3.00	3.00	± 0.10	1,3
E	4.90	4.90	± 0.15	-
E1	3.00	3.00	± 0.10	2,3
e	0.65	0.50	Basic	-
L	0.55	0.55	± 0.15	-
L1	0.95	0.95	Basic	-
N	8	10	Reference	-

Rev. D 2/07
NOTES:

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. Dimensions " D " and " $E 1$ " are measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

