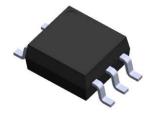
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

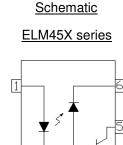

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EVERLIGHT

DATASHEET

5 PIN SOP HIGH SPEED 1Mbit/s TRANSISTOR PHOTOCOUPLER ELM45X series

Features


- High speed 1Mbit/s
- High isolation voltage between input and output (Viso=3750 Vrms)
- High CMR 15KV/us at V_{CM}=1500V (ELM453)
- Guaranteed performance from 0°C to 70°C
- Wide operating temperature range of -40°C to 85°C
- Pb free and RoHS and Halogen free compliant
- cUL approved (No. E214129)
- VDE approved (No. 40028116)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Description

The ELM452 and ELM453 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate connection for the photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor. The devices are packaged in industry standard 5pin SOP packages and are suitable for surface mounting.

Applications

- Line receivers
- Field bus communication and control.
- Power transistor isolation in motor drives
- Replacement for low speed phototransistor photo couplers
- High speed logic ground isolation
- Analog signal ground isolation

Pin Configuration

- 1. Anode
- 3. Cathode
- 4. Gnd
- 5. Vout
- 6. V_{CC}

Absolute Maximum Ratings (Ta=25°C unless otherwise noted)

	Parameter	Symbol	Rating	Unit
	Forward current	١ _F	25	mA
	Peak forward current (50% duty, 1ms P.W)	I _{FP}	50	mA
Input	Peak transient current (≤1µs P.W,300pps)	I _{Ftrans}	1	А
	Reverse voltage	V _R	5	V
	Power dissipation	P _{IN}	45	mW
	Power dissipation	Po	100	mW
	Average Output current	I _{O(AVG)}	8	mA
Output	Peak Output current	I _{O(PK)}	16	mA
	Output voltage	Vo	-0.5 to 20	V
	Supply voltage	V _{CC}	-0.5 to 30	V
Isolation	voltage ^{*1}	V _{ISO}	3750	V rms
Operatin	g temperature	T _{OPR}	-40 ~ +85	°C
Storage	temperature	T _{STG}	-55 ~ +125	°C
Solderin	g temperature ^{*2}	T _{SOL}	260	°C

Notes:

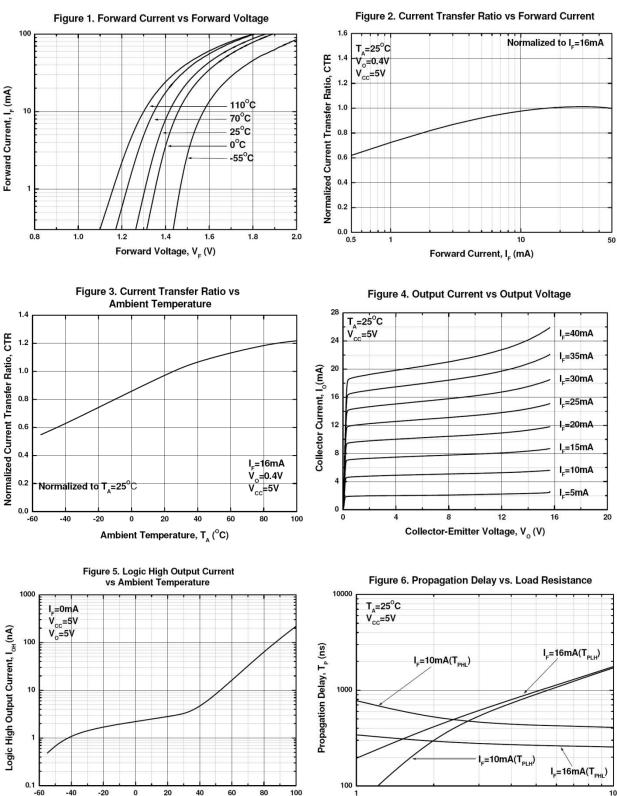
*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

*2 For 10 seconds.

Electrical Characteristics (T_A=0 to 70°C unless specified otherwise)

Input						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	-	1.45	1.8	V	I _F = 16mA
Reverse Voltage	V_{R}	5.0	-	-	V	I _R = 10μΑ
Temperaturecoefficient of forward $\Delta V_F / \Delta T_A$ voltage		-	-1.6	-	mV/°C	I _F =16mA
Output						
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Logic High Output	1 -	-	0.001	0.5		I _F =0mA, V _O =V _{CC} =5.5V, T _A =25°C
Current	I _{ОН} –	-	0.001	1	μA	I _F =0mA, V _O =V _{CC} =15V, T _A =25°C
	-	-	-	50	•	I _F =0mA, V _O =V _{CC} =15V

						I _A =25°C
		-	-	50		$I_F=0mA, V_O=V_{CC}=15V$
Logic Low Supply	I _{CCL}	-	100	200	μA	I _F =16mA, V _O =Open,
Current	001				•	V _{CC} =15V
Logic High Supply	1	-	0.05	1	ıιΔ	I _F =0mA, V _O =Open, V _{CC} =15V, T _A =25°C
Current	ГССН	_	_	2	μA	I _F =0mA, V _O =Open,
				2		V _{CC} =15V


Transfer Characteristics

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Current Transfer Ratio	CTR -	20	-	50	%	$I_F = 16mA$, $V_O = 0.4V$, $V_{CC} = 4.5V$, $T_A = 25^{\circ}C$
	UIN	15	-	-		$I_F = 16mA$, $V_O = 0.5V$, $V_{CC} = 4.5V$
Logic Low Output	V	-	-	0.4	V	I _F = 16mA ,I _O = 3mA, V _{CC} =4.5V, T _A =25°C
Voltage	V _{OL} -	-	-	0.5		$I_{F} = 16mA, I_{O} = 2.4mA, V_{CC} = 4.5V$

Switching Characteristics (T_A=0 to 70°C unless specified otherwise, Vcc=5V)

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition
Propagation Delay Time		T _{PHL}	-	0.4	0.8	μs	I _F =16mA, R _L =1.9KΩ, T _A =25°C
to Logic Lov	w ⁽⁰⁾ (Fig.8)	·FAL	-	-	1.0	P.o.	$I_F=16mA, R_L=1.9K\Omega$
Propagation Delay Time to Logic High		T _{PLH}	-	0.35	0.8	μs	I _F =16mA, R _L =1.9KΩ, T _A =25°C
^(*3) (Fig.8)			-	-	1.0	μ3	$I_F=16mA, R_L=1.9K\Omega$
Common Mode Transient	Mode		5,000	-	-		I _F = 0mA , V _{CM} =10Vp-p, R _L =1.9KΩ, T _A =25°C
Immunity at Logic High ^(*4) (Fig.9)	ELM453	CM _H	15,000	-	-	V/µs	I _F = 0mA , V _{CM} =1500Vp-p, R _L =1.9KΩ, T _A =25°C
Common Mode Transient	ELM452		5,000	-	-	Mhar	I _F = 16mA , V _{CM} =10Vp-p, R _L =1.9KΩ, T _A =25°C
Immunity at Logic Low (Fig.9)∗ ₃	ELM453	CML	15,000	-	-	V/µs	$I_F = 16mA$, V _{CM} =1500Vp-p, R _L =1.9KΩ, T _A =25°C

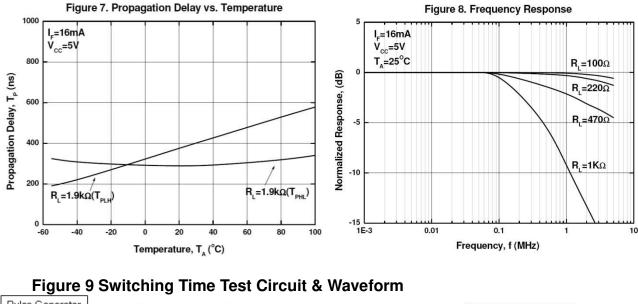
* Typical values at T_A = 25°C

Typical Electro-Optical Characteristics Curves

Load Resistance, R₁ (kΩ)

Ambient Temperature, $T_A (^{\circ}C)$

5



0V

5V

1.5V

----- Voi

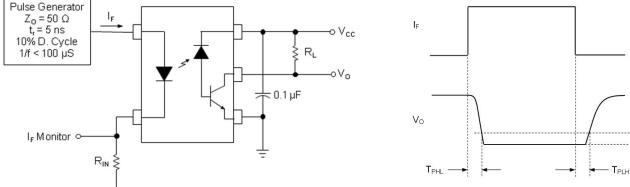
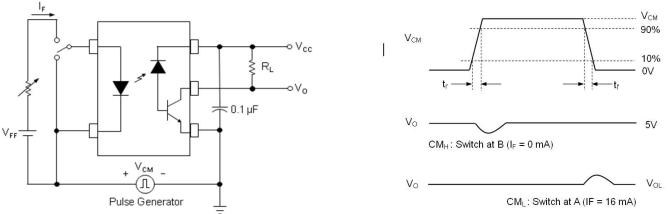



Figure 10 Transient Immunity Test Circuit & Waveform

Note:

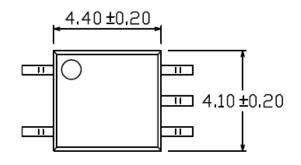
*3 Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode pulse signal VCM, to assure that the output will remain in a logic high state (i.e., VO > 2.0V).

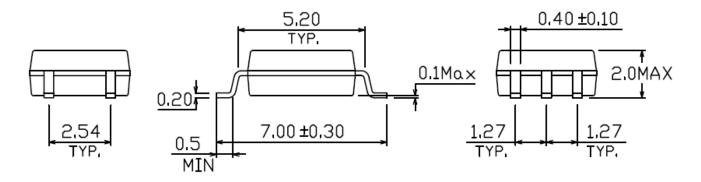
Common mode transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., VO < 0.8V).

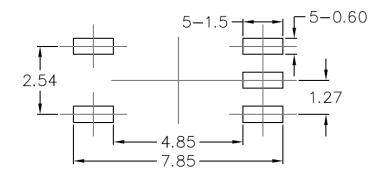
Order Information

Part Number

Note

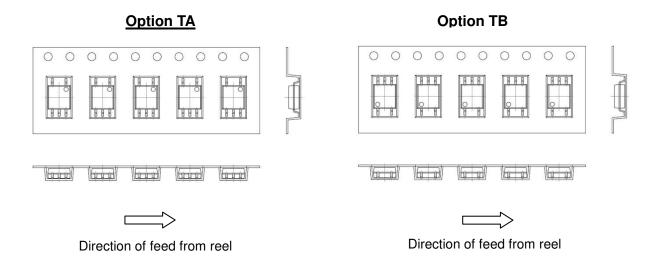

- X = Part No. (2 or 3)
- Z = Tape and reel option (TA, TB or none)
- V = VDE (optional)

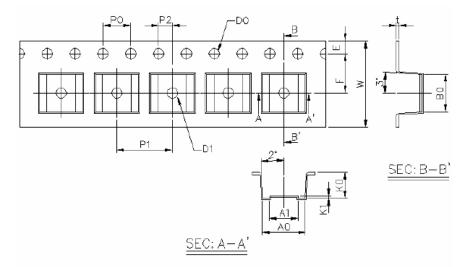

Option	Description	Packing quantity
None	Standard	100 units per tube
-V	Standard + VDE	100 units per tube
(TA)	TA tape & reel option	3000 units per reel
(TB)	TB tape & reel option	3000 units per reel
(TA)-V	TA tape & reel option + VDE	3000 units per reel
(TB)-V	TB tape & reel option + VDE	3000 units per reel


Package Dimension

(Dimensions in mm)

Recommended pad layout for surface mount leadform


Device Marking

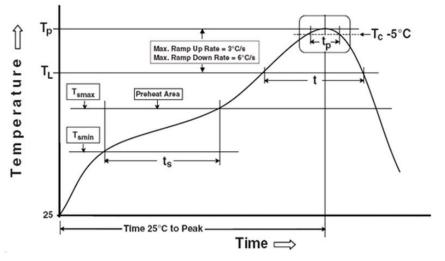

Notes

EL	denotes EVERLIGHT
M453	denotes Device Number
Υ	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE (optional)

Tape & Reel Packing Specifications

Tape dimensions

Dimension No.	A0	A1	В0	D0	D1	Е	F
Dimension(mm)	6.2±0.1	4.1±0.1	5.28±0.1	1.5±0.1	1.5±0.3	1.75±0.1	5.5±0.1
Dimension No.	Ро	P1	P2	t	W	К0	K1
Dimension(mm)	4.0±0.1	8.0±0.1	2.0±0.1	0.4±0.1	12.0+0.3/ -0.1	3.7±0.1	0.3±0.1


EVERLIGHT

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Time 25°C to peak temperature

Reflow times

Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time $(T_{smin} \text{ to } T_{smax})$ (t_s)	60-120 seconds
Average ramp-up rate $(T_{smax} \text{ to } T_p)$	3 °C/second max
Other	
Liquidus Temperature (T _L)	217 °C
Time above Liquidus Temperature (t $_{L}$)	60-100 sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T_P - 5°C	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.

Reference: IPC/JEDEC J-STD-020D

8 minutes max.

3 times

11 Copyright © 2010, Everlight All Rights Reserved. Release Date : May 13, 2013. Issue No:DPC-0000113 Rev.3

www.everlight.com

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.