imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

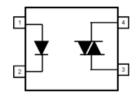
DATASHEET

4 PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTOCOUPLER ELT302X, ELT305X Series

Features:

- Peak breakdown voltage
- 400V: ELT302X
- 600V: ELT305X
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact dual-in-line package
- Pb free and RoHS compliant.
- UL and cUL approved(No. E214129)
- VDE approved (No. 40028391)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Description


The ELT302X and ELT305X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon random phase photo Triac.

They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations.

Applications

- Solenoid/valve controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 to 240Vac peripherals
- Incandescent lamp dimmers
- Temperature controls
- Motor controls

Schematic

Pin Configuration

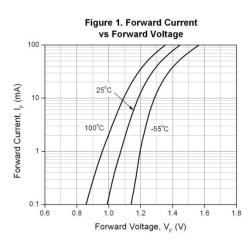
- 1. Anode
- 2. Cathode
- 3. Terminal
- 4. Terminal

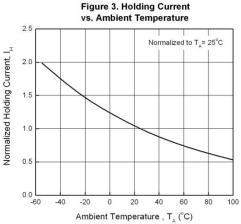
Absolute Maximum Ratings (Ta=25°C)

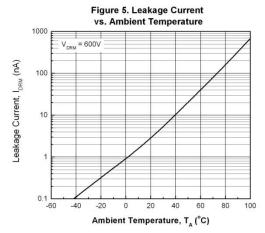
	Parameter		Symbol	Rating	Unit	
Input	Forward current		l _F	60	mA	
	Reverse voltage		V _R	6	V	
	Power dissipation		5	100	mW	
	Derating factor (above $T_a = 85^{\circ}C$)		P _D -	3.8	mW /°C	
Output	Off-state Output Terminal Voltage	ELT302X	Ň	400		
		ELT305X	– V _{DRM} –	600	- V	
	Peak Repetitive Surge	Current	I _{TSM}	1	А	
	Power dissipation			300	mW	
	Derating factor (above $T_a = 85^{\circ}C$)		P _C –	7.4	m₩/°C	
Total power dissipation		P _{TOT}	330	mW		
Isolation voltage ^{*1}			V _{ISO}	5000	Vrms	
Operating temperature			T _{OPR}	-55 to 100	°C	
Storage temperature		T _{STG}	-55 to 125	°C		
Soldering Temperature* ²			T _{SOL}	260	°C	

Notes:

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 2 are shorted together, and pins 3 & 4 are shorted together.


*2 For 10 seconds


Electro-Optical Characteristics (Ta=25°C unless specified otherwise)


Input							
Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Voltage	e	V _F	-	1.18	1.5	V	I _F = 10mA
Reverse Leaka	ge current	I _R	-	-	10	μΑ	$V_R = 6V$
Output							
Param	eter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Peak Blocking Current		I _{DRM}	-	-	100	nA	V_{DRM} = Rated V_{DRM} I _F = 0mA
Peak On-state Voltage		V_{TM}	-	-	2.5	V	I _{TM} =100mA peak, I _F =Rated I _{FT}
Critical Rate of	ELT302X	- dv/dt	-	100	-	V/µs	V _{PEAK} =Rated V _{DRM} , I _F =0 (Fig. 8)
Rise off-state Voltage	ELT305X		1000	-	-		V _{PEAK} =400V, I _F =0 (Fig. 8)
Transfer Cha	racteristics						
Param	eter	Symbol	Min.	Тур.*	Max.	Unit	Condition
	ELT3021 ELT3051		-	-	15		
LED Trigger Current	ELT3022 ELT3052	I _{FT}	-	-	10	mA	Main terminal Voltage=3V
	ELT3023 ELT3053		-	-	5		
Holding Current		Ι _Η	-	250	-	μA	

* Typical values at T_a = 25°C

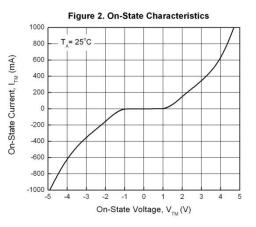
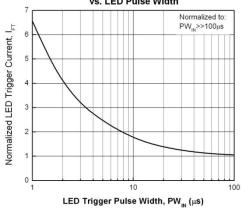
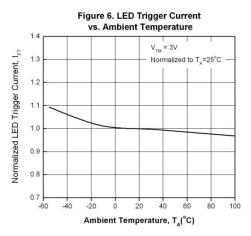
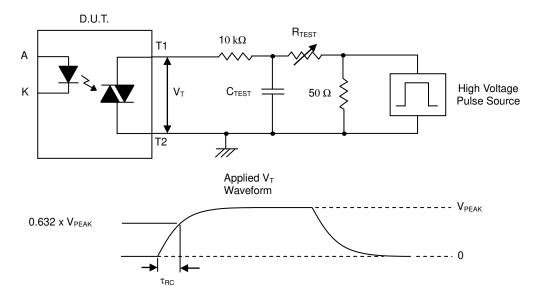




Figure 4. LED Current Required to Trigger



vs. LED Pulse Width

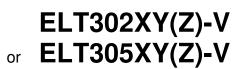
Figure 7. Off-State Output Terminal Voltage vs. Ambient Temperature 1.4 Normalized to T_A=25°C 1.3 Normalized Off-State Output Terimal Valtage, V_{DRM} 1.2 1.1 1.0 0.9 0.8 0.7 🖵 -60 -40 -20 20 40 60 80 100 Ambient Temperature, T_A (°C)

Figure 8. Static dv/dt Test Circuit & Waveform

EVERLIGHT

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST}, the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.


$$dv/dt = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$

For example, $V_{PEAK} = 400V$ for EL302X series. The dv/dt value is calculated as follows:

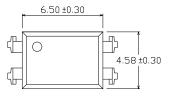
$$dv/dt = \frac{0.63 \times 400}{\tau_{RC}} = \frac{252}{\tau_{RC}}$$

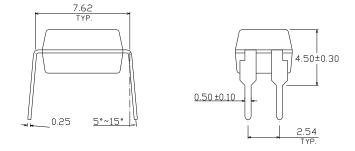
Order Information

Part Number

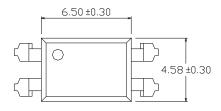
Note

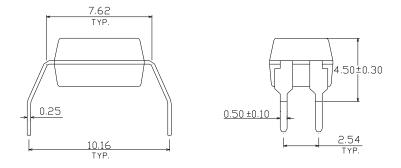
X = Part No. (1, 2 or 3)

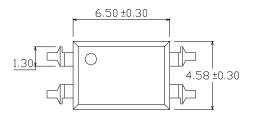

- Y = Lead form option (S, S1, M or none)
- Z = Tape and reel option (TA, TB, TU, TD or none).

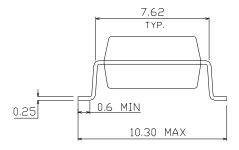

V = VDE safety approved (optional)

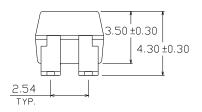
Option	Description	Packing quantity
None	Standard DIP-4	100 units per tube
М	Wide lead bend (0.4 inch spacing)	100 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel
S (TU)	Surface mount lead form + TU tape & reel option	1500 units per reel
S (TD)	Surface mount lead form + TD tape & reel option	1500 units per reel
S1 (TU)	Surface mount lead form (low profile) + TU tape & reel option	1500 units per reel
S1 (TD)	Surface mount lead form (low profile) + TD tape & reel option	1500 units per reel

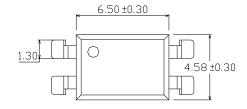

Package Dimension (Dimensions in mm)

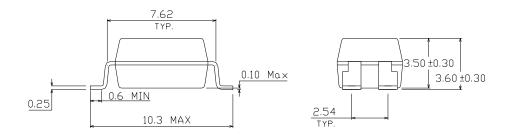

Standard DIP Type

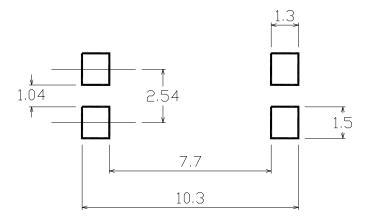



Option M Type

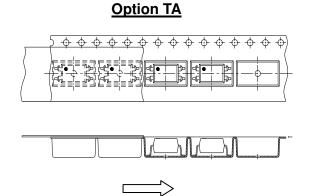


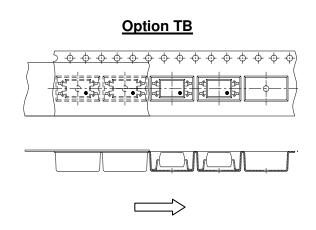

Option S Type




Option S1 Type

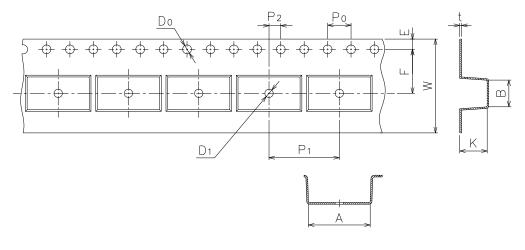
Recommended pad layout for surface mount leadform


Device Marking


Notes

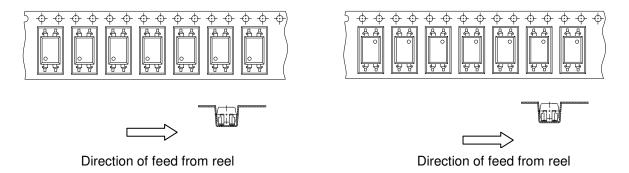
EL	denotes Everlight
T3053	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE option

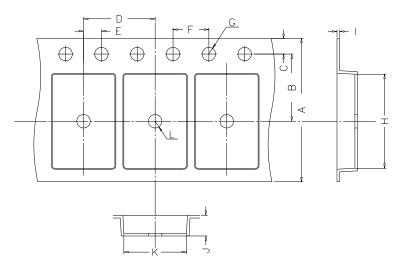
Tape & Reel Packing Specifications


Direction of feed from reel

EVERLIGHT

Direction of feed from reel

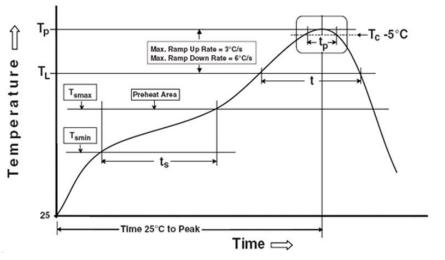

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.5±0.1	4.65±0.1	1.55±0.1	1.50±0.1	1.75±0.1	7.5±0.1
	-	-		_		
Dimension No.	Ро	P1	P2	t	W	К

Option TD

Option TU

Tape dimensions



Dimension No.	Α	В	С	D	E	F
Dimension(mm)	16.00±0.3	7.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1
Dimension No.	G	н	I	J	к	L
Dimension(mm)	1.55±0.05	10.4±0.1	0.4±0.05	4.60±0.1	5.1±0.1	1.55±0.05

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time (T_{smin} to T_{smax}) (t_s) Average ramp-up rate (T_{smax} to T_p)	60-120 seconds 3 °C/second max
Other	
Liquidus Temperature (T_L)	217 °C
Time above Liquidus Temperature (t $_{L}$)	60-100 sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T_P - 5°C	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.
Time 25°C to peak temperature Reflow times	8 minutes max. 3 times

Reference: IPC/JEDEC J-STD-020D

EVERLIGHT

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.