

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

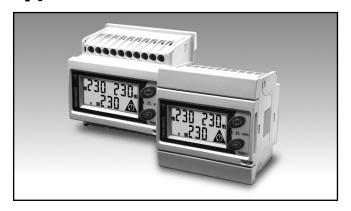
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Energy Management Energy Meter Type EM21 72D

- Certified according to MID Directive (option PF only): see "how to order" below
- Not-certified version available (option X): see "how to order" on the next page.

- Class B (kWh) according to EN50470-3
- Class 1 (kWh) according to EN62053-21
- Class 2 (kvarh) according to EN62053-23
- Accuracy ±0.5 RDG (current/voltage)
- Energy meter
- Instantaneous variables readout: 3 DGT
- Energies readout: 7 DGT
- System variables: W, var, PF, Hz, Phase-sequence.
- Single phase variables: V_{LL}, V_{LN}, A, PF
- Energy measurements: total kWh and kvarh
- TRMS measurements of distorted sine waves (voltages/currents)
- Self power supply
- Dimensions: 4-DIN modules and 72x72mm
- Protection degree (front): IP50
- Application adaptable display and programming procedure (Easyprog function)
- Easy connections management
- Detachable display
- Multi-use housing: for both DIN-rail and panel mounting applications

Product Description

Three-phase energy meter with removable front LCD display unit. The same unit can be used either as a DIN-rail mounting or a panel mounting energy meter. This general purpose three-phase energy

meter is suitable for both active and reactive energy metering for cost allocation but also for main electrical parameter measurement and retransmission (transducer function). Housing for DIN-rail mounting with IP50 (front) protection degree. Current measurements carried out by means of external current transformers and voltage measurements carried out either by means of direct connection or by means of potential transformers. EM21-72D is provided, as standard, with a pulsating output for active energy retransmission. In addition a 2-wire RS485 communication port is available as an option.

Certified according to MID Directive, Module B and Module D of Annex II, for legal metrology relevant to active electrical energy meters (see Annex V, MI003, of

MID). Can be used for fiscal (legal) metrology. Only the total active energy meter is certified according to MID.

X:

S:

None

RS485 port

How to order EM21 72D AV5 3 X O X PF A D

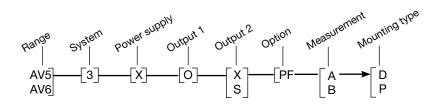
Model — Range code — System — Power supply — Output 1	Range codeSystem
Output 2 Option	Measurement ————————————————————————————————————

Type Selection

Single static output (opto-

mosfet)

O:


Range o	codes	Syst	em	Pow	er supply	Optio	ons
AV6:	400V _{LL} AC, 5(6)A (CT connection) 120/230V _{LL} AC 5(6)A (VT/PT and CT connections)	3:	3-phase, 4-wire	X:	Self power supply from 18V to 260VAC VLN, 50 Hz (connection VL1-N)	PF:	Certified according to MID Directive. Can be used for fiscal (legal) metrology.
Output 1		Outp	out 2	Mou	nting type		

D:

P:

DIN-rail mounting

Panel mounting

Measurement

- A: The power is always integrated -both in case of positive (imported) and negative (exported) power
- B: only the positive (imported)
 power is integrated no
 integration in case of
 negative (exported) power

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

STANDARD

Not certified according to MID directive. Cannot be used for fiscal (legal) metrology.

Model ______ EM21 72D AV5 3 X O X X Range code ______ System _____ Power supply ______

ard.

Type Selection

(opto-mosfet)

Range codes **System Power supply Options** AV5: 400V_{LL} AC, 5(6)A or 3: balanced and X: Self power supply X: none 1(6)A (*) from 18V to 260VAC unbalanced load: (CT connection) VLN, 45 to 65 Hz 3-phase, 4-wire; AV6: 120/230V_{LL} AC 3-phase, 3-wire; (connection VL1-N) 5(6)A or 1(6)A (*) 2-phase, 3-wire; (VT/PT and 1-phase, 2-wire CT connections) (*) the range 1(6)A is avail-Output 1 **Output 2** able but not in compliance with the EN50470-3 stand-0: Single static output None

Output 1 Output 2 Option –

Range
$$SY_{stem}^{tem}$$
 $Power supply Output 1 Output 2 Option AV5 3 X = [X]$

S:

RS485 port

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

Input specifications

Rated inputs Current type	System type: 3 Not isolated (shunt inputs).	Energies	Imported Total: 5+2, 6+1 or 7DGT		
	Note: the external current transformers can be con-	Overload status	EEE indication when the value being measured is		
Current range (by CT)	nected to earth individually. AV5 and AV6: 5(6)A. The		exceeding the "Continuous inputs overload" (maximum		
	"1(6)A" range is available but not in compliance with	Max. and Min. indication	measurement capacity) Max. instantaneous vari-		
Voltage (direct or by VT/PT)	the EN50470-3 standard. AV5: 400VLL; AV6: 120/230VLL		ables: 999; energies: 9 999 999. Min. instantane- ous variables: 0; energies		
Accuracy (Display + RS485) (@25°C ±5°C, R.H. ≤60%, 50Hz)	In: see below, Un: see below	LEDs	0.00. Red LED (Energy con-		
AV5 model	In: 5A, Imax: 6A; Un: 160 to 260VLN (277 to 450VLL).		sumption) 0.001 kWh by pulse if CT		
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL).		ratio x VT ratio is <7;		
Current AV5, AV6 models	From 0.002In to 0.2In: ±(0.5% RDG +3DGT). From 0.2In to Imax: ±(0.5% RDG +1DGT).		0.01 kWh by pulse if CT ratio x VT ratio is ≥ 7.0 < 70.0; 0.1 kWh by pulse if CT		
Phase-neutral voltage	In the range Un: ±(0,5% RDG +1DGT).		ratio x VT ratio is ≥ 70.0 < 700.0; 1 kWh by pulse if CT ratio		
Phase-phase voltage	In the range Un: ±(1% RDG +1DGT).	Max frequency	x VT ratio is ≥ 700.0; 16Hz, according to		
Frequency	Range: 50Hz; resolution: ±1Hz	,	EN50470-3 Green LED (on the terminal		
Active power Power Factor	±(1%RDG +2DGT). ±[0.001+1%(1.000 - "PF		blocks side) for power on (steady) and communica-		
Reactive power	RDG")]. ±(2%RDG +2DGT).		tion status: RX-TX (in case		
Active energy	class B according to		of RS485 option only) blinking.		
	EN50470-1-3; class 1 according to	Measurements	See "List of the variables that can be connected to:"		
Reactive energy	EN62053-21. class 2 according to	Method	TRMS measurements of distorted wave forms.		
	EN62053-23. In: 5A, Imax: 6A; 0.1 In:	Coupling type	By means of external CT's		
	0.5A.	Crest factor	In 5A: ≤3 (15A max. peak).		
	Start up current: 10mA.	Current Overloads	04 @ 5011		
Energy additional errors	A " FN00050 04	Continuous For 500ms	6A, @ 50Hz. 120A, @ 50Hz.		
Influence quantities	According to EN62053-21, EN50470-1-3, EN62053-23	Voltage Overloads			
Temperature drift	≤200ppm/°C.	Continuous For 500ms	1.2 Un 2 Un		
Sampling rate	1600 samples/s @ 50Hz, 1900 samples/s @ 60Hz	Current input impedance 5(6)A	< 0.3VA		
Display refresh time	1 second	Voltage input impedance	< 0.3VA		
Display	2 lines	Self-power supply	Power consumption: <2VA.		
	1 st line: 7-DGT, 2 nd line: 3-DGT or	Frequency	50 ± 5Hz/60 ± 5Hz.		
	1 st line: 3-DGT + 3-DGT, 2 nd line: 3-DGT.	Key-pad	Two push buttons for variable selection and		
Type	LCD, h 7mm.		programming of the instru-		
Instantaneous variables read-out	3-DGT.		ment working parameters.		

Output specifications

Pulse output		Connections	2-wire. Max. distance
Number of outputs	1		1000m, termination directly
Type	Programmable from 0.01 to 9.99 kWh per pulses.	Addresses	on the instrument. 247, selectable by means
	Output connectable to the	Addresses	of the front keypad
	energy meters (kWh)	Protocol	MODBUS/JBÚS (RTU)
Pulse duration	T _{OFF} ≥120ms, according to	Data (bidirectional)	, ,
	EN62052-31.	Dynamic (reading only)	System and phase vari-
	T _{ON} selectable (30 ms		ables: see table "List of
	or 100 ms) according to	04-4:- (variables"
Output	EN62053-31 Static: opto-mosfet.	Static (reading and writing)	All the configuration
Load	V _{ON} 2.5 VAC/DC max. 70 mA,	Data format	parameters. 1 start bit, 8 data bit, no
Load	V _{OFF} 260 VAC/DC max.	Data format	parity,1 stop bit.
Insulation	By means of optocouplers,	Baud-rate	9600 bits/s.
	4000 VRMS output to	Driver input capability	1/5 unit load. Maximum
	measuring inputs.		160 transceiver on the
RS485			same bus.
Туре	Multidrop, bidirectional	Insulation	By means of optocouplers,
	(static and dynamic vari-		4000 VRMS output to measuring input.
	ables)		measuring input.

Software functions

Password 1st level 2nd level	Numeric code of max. 3 DGT; 2 protection levels of the pro- gramming data: Password "0", no protection; Password from 1 to 999, all data are protected	System 1-Ph Transformer ratio VT (PT) CT	1-phase (2-wire) 1.0 to 99.9 / 100 to 999 / 1.0 to 99.9 / 100 to 999. The maximum VT by CT ratio is 525 for AV5_PF models, 1187 for AV5_X models.
Programming lock	By means of potentiometer (back-side of the display module) it is possible to lock the access to all the configuration parameters.	Displaying	Up to 3 variables per page. See « Display pages », 3 different set of variables avail- able (see « Display pages ») according to the metering function being selected.
System selection System 3-Ph.n unbalanced load	3-phase (4-wire)	Reset	By means of the front key-
-,	3-phase (3-wire)	Heset	pad: total energies (kWh,
System 3-Ph.1 balanced load	• 3-phase (3-wire) one cur-		kvarh).
System 2-Ph	rent and 3-phase to phase voltage measurements. Note: the phase to phase voltage is calculated multiplying by 1.73 the virtual phase to neutral voltage. • 3-phase (4-wire) one current and 3-phase to neutral voltage measurements. Note: the phase to phase voltage is calculated multiplying by 1.73 the virtual phase to neutral voltage. • 3-phase (2-wire) one current and 1-phase (L1) to neutral voltage measurement. 2-phase (3-wire)	Easy connection function	Wrong phase detection and displaying. For all the display selections (except "D") the current, power and energy measurement are independent on the current direction.
System 2-1 m	2-piiase (0-wiie)		

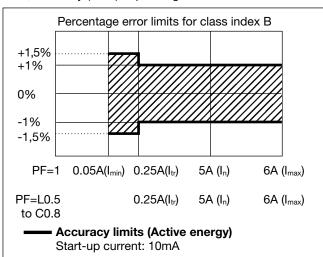
General specifications

Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C) according to EN62053-21 and EN62053-23.	Surge Radio frequency suppression Standard compliance	On current and voltage measuring inputs circuit: 6kV; According to CISPR 22
Storage temperature	-30°C to +70°C (-22°F to 158°F) (R.H. < 90% non-condensing @ 40°C) according to EN62053-21 and EN62053-23.	Safety Metrology	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11 EN62053-21, EN62053-23, EN50470-3
Installation category	Cat. III (IEC60664, EN60664).	Pulse output Approvals	DIN43864, IEC62053-31 CE, cULus listed, MID (PF option only)
Insulation (for 1 minute)	4000 VRMS between measuring inputs and digital output.	Connections Cable cross-section area	Screw-type 2.4 x 3.5 mm Min./Max. screws tighten-
Dielectric strength	4000 VRMS for 1 minute.		ing torque: 0.4 Nm / 0.8 Nm
Noise rejection CMRR	100 dB, 48 to 62 Hz.	Housing	mig terquer er rum, ele rum
EMC Electrostatic discharges Immunity to irradiated Electromagnetic fields Burst Immunity to conducted disturbances	According to EN62052-11 15kV air discharge; Test with current: 10V/m from 80 to 2000MHz; Test without any cur- rent: 30V/m from 80 to 2000MHz; On current and voltage measuring inputs circuit: 4kV 10V/m from 150KHz to 80MHz	Dimensions (WxHxD) Material Mounting Protection degree Front Screw terminals Weight	72 x 72 x 65 mm Noryl PA66, self-extinguishing: UL 94 V-0 Panel and DIN-rail IP50 IP20 Approx. 400 g (packing included)

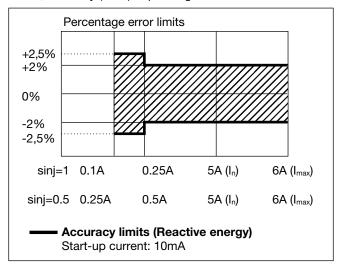
Power supply specifications

Self power supply	18 to 260VAC (48-62Hz). Across input "VL1" and "N"	Power consumption	≤2VA/1W

Insulation between inputs and outputs


	Measuring Inputs	Opto-Mosfet output	Communication port	Self power supply
Measuring Inputs	-	4kV	4kV	0kV
Opto-Mosfet output	4kV	-	-	4kV
Communication port	4kV	-	-	4kV
Self power supply	0kV	4kV	4kV	-

NOTE: all the models have, mandatorily, to be connected to external current transformers.



Accuracy (According to EN50470-3 and EN62053-23)

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

MID compliance (PF option only)

Accuracy	0.9 Un ≤ U ≤ 1.1 Un; 0.98 fn ≤ f ≤ 1.02 fn;	EMC compliance Mechanical compliance	E2 M2		
	fn: 50Hz; cosj: 0.5 inductive to 0.8 capacitive. Class B I st: 0.01A; I min: 0.05A; I tr: 0.25A; I n: 5A I max: 6A.	Protection degree	in order to achieve the protection against dust and water required by the norms harmonized to MID, the meter must be used only installed in IP51 (or		
Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C)		better) cabinets.		

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i}^{n} (V_{1N})_{i}^{2}}$$

Instantaneous active power

$$W_{1} = \frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i} \cdot (A_{1})_{i}$$

Instantaneous power factor

$$\cos \varphi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_1)_i^2}$$

Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$var_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$$

Voltage asymmetry

Three-phase active power

Three-phase apparent power

 $W_{\Sigma} = W_1 + W_2 + W_3$

 $VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \text{var}_{\Sigma}^2}$

Three-phase power factor

(TPF)

$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$

Energy metering

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t)dt \cong \Delta t \sum_{t_1=0}^{t_2} Qnj$$

$$kWhi = \int_{t1}^{t2} Pi(t)dt \cong \Delta t \sum_{n1}^{n2} Pnj$$

i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; t₁, t₂ = starting and ending time points of consumption recording; n= time unit; ∆t= time interval between two successive power consumptions; $\mathbf{n_1}$, $\mathbf{n_2}$ = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

- RS485 communication portPulse outputs (only "energies")

No	Variable	1-ph. sys.	2-ph. sys.	3-ph. 4-wire balanced sys- tem	3-ph. 3-wir balanced sys- tem	3-ph. 4-wire unbalanced system	3-ph. 3-wir unbalanced system	Notes
1	kWh	Х	Х	х	x	Х	Х	Total
2	kvarh	Х	Х	x	x	X	Х	Total
3	V L-N sys (1)	0	Х	х	X	Х	Х	sys=system (∑)
4	V L1	Х	Х	х	х	Х	Х	
5	V L2	0	Х	х	х	X	Х	
6	V L3	0	0	х	х	Х	Х	
7	V L-L sys (1)	0	Х	х	х	Х	Х	sys=system (∑)
8	V L1-2	0	Х	х	х	Х	Х	
9	V L2-3	0	0	X	X	Х	Х	
10	V L3-1	0	0	х	х	Х	Х	
11	A L1	Х	Х	х	х	Х	Х	
12	A L2	0	Х	х	х	Х	Х	
13	A L3	0	0	х	х	X	X	
14	VA sys (1)	Х	Х	х	х	Х	Х	sys=system (∑)
15	VA L1 (1)	Х	Х	х	х	Х	Х	
16	VA L2 (1)	0	Х	х	х	Х	Х	
17	VA L3 (1)	0	0	X	X	Х	Х	
18	var sys	Х	Х	x	X	Х	Х	sys=system (∑)
19	var L1 (1)	Х	Х	х	х	Х	Х	
20	var L2 (1)	0	Х	х	х	Х	Х	
21	var L3 (1)	0	0	X	X	Х	Х	
22	W sys	Х	Х	X	X	Х	Х	sys=system (∑)
23	W L1 (1)	Х	Х	х	х	Х	Х	
24	W L2 (1)	0	Х	х	х	Х	Х	
25	W L3 (1)	0	0	X	X	Х	Х	
26	PF sys	Х	Х	х	х	Х	Х	sys=system (∑)
27	PF L1	Х	Х	х	Х	Х	Х	
28	PF L2	0	Х	х	Х	Х	Х	
29	PF L3	0	0	х	Х	Х	Х	
30	Hz	Х	Х	х	Х	Х	Х	
31	Phase sequence	0	0	х	х	Х	Х	

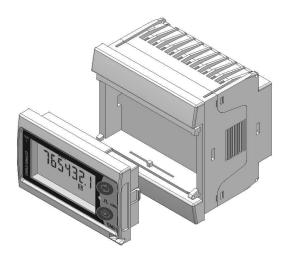
- (x) = available
- (o) = not available (zero indication on the display) (1) = Variable available only through the serial communication port RS485

Display pages

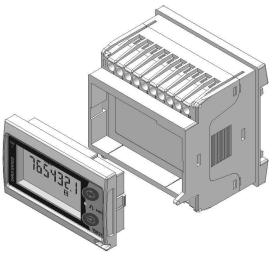
Nie	1st variable	2nd variable	3rd variable	Note	A	pplic	ation	s
No	(1st half-line)	(2 nd half-line)	(2nd line)	Note	Α	В	С	D
	Phase sequence			The phase sequence triangle appears in any page only if there is a phase reverse	Х	Х	х	х
1	Tota	l kWh	W sys		Х	Х	Х	х
2	Total	kvarh	kvar sys			Х	Х	х
3		PF sys	Hz	Indication of C, -C, L, -L depending on the quadrant		х	х	х
4	PF L1	PF L2	PF L3	Indication of C, -C, L, -L depending on the quadrant			х	х
5	A L1	A L2	A L3				Х	х
6	V L1-2	V L2-3	V L3-1				Х	х
7	V L1	V L2	V L3				Х	х

Additional available information on the display

Туре	1st line	2nd line	note
Meter information 1	Y. 2007	r.A0	Year of production and firmware release
Meter information 2	value	LEd (kWh)	KWh per pulse of the LED
Meter information 3	SYS [3P.n]	value	System type and connection type
Meter information 4	Ct rAt.	value	Current transformer ratio
Meter information 5	Ut rAt.	value	Voltage transformer ratio
Meter information 6	PuLSE (kWh)	value	Pulse output: kWh per pulse
Meter information 7	Add	value	Serial communication address
Meter information 8	value	Sn	Secondary address (M-bus protocol)

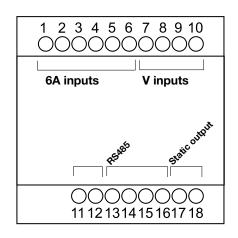

List of selectable applications

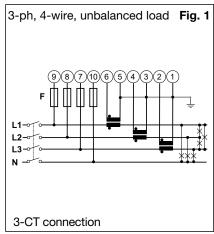
	Description	Notes
Α	Active energy meter **	Active energy measurement with some minor parameters
В	Active and reactive energy meter **	Active and reactive energy measurement with some minor parameters
С	Full set of variables **	Full set of available variables can be displayed (default selection, except PFB option)
D	Full set of variables **	Full set of available variables can be displayed + (default in PFB option)

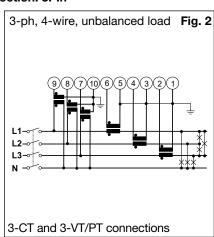

Notes:

- ⁺ Only in "D" application the actual direction of the current is considered.
- * Not available with option PF A. ** Not available with option PF B.

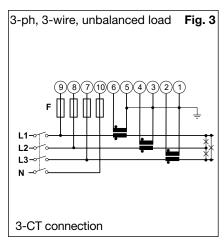
One instrument with double mounting capability

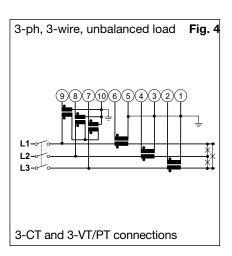

By means of the patented detachable display it is possible to configure the same instrument either as a panel mounting meter or...

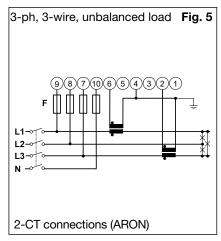

... as DIN-rail mounting meter.

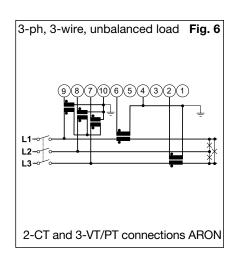


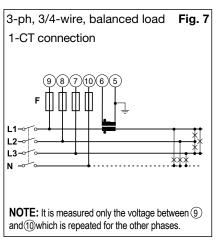
Wiring diagrams

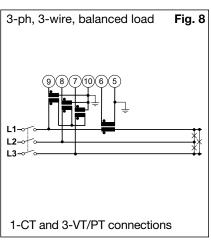



(6A) Self power supply, system type selection: 3P.n

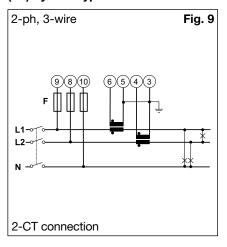


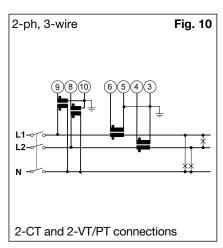

(6A) System type selection: 3P.n





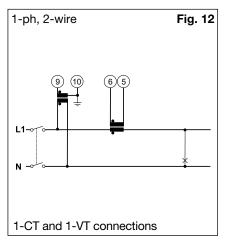
(6A) Self power supply, system type selection: 3P.1

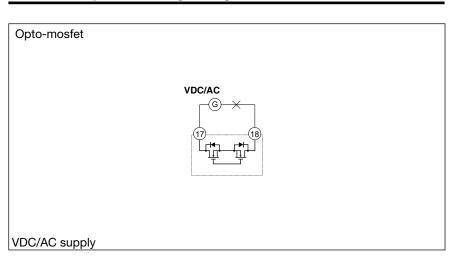



NOTE: For a correct power supply of the instrument, the neutral must always be connected.

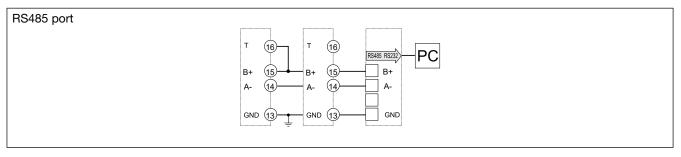
Wiring diagrams

(6A) System type selection: 2P

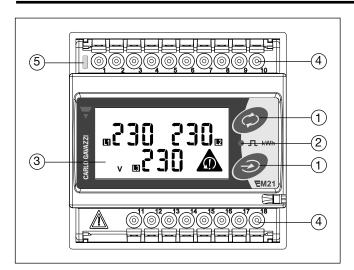



(6A) System type selection: 1P 1-ph, 2-wire Fig. 11

1-CT connection


Static output wiring diagram

(6A) System type selection: 1P


RS485 port wiring diagram

RS485 NOTE: additional devices provided with RS485 are connected as per the picture above. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).

Front panel description

1. Keypad

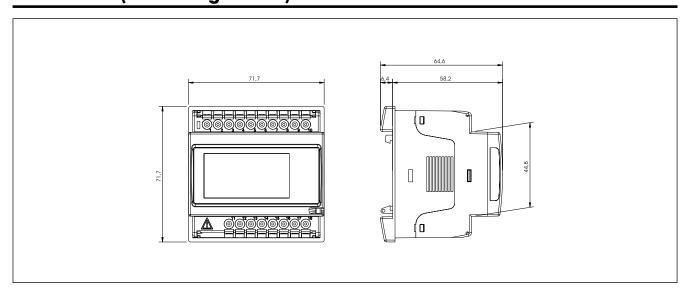
To program the configuration parameters and scroll the variables on the display.

2. Pulse output LED

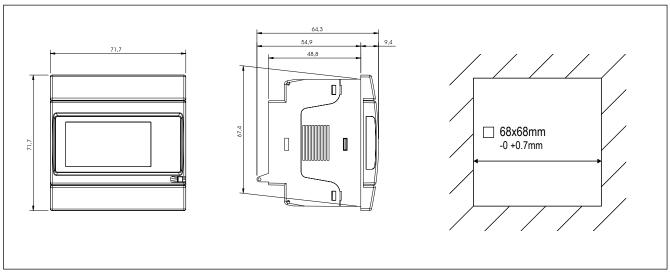
Red LED blinking proportional to the energy being measured.

3. Display

LCD-type with alphanumeric indications to display all the measured variables.


4. Connections

Screw terminal blocks for instrument wiring.


5. Green LED

Lit when power supply is available

Dimensions (DIN configuration)

Dimensions and panel cut out (72x72 panel mounting configuration)

