imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual Common Base-Collector Bias Resistor Transistors

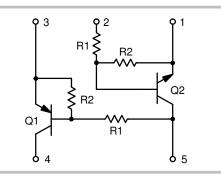
NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMC2DXV5T1G series, two complementary BRT devices are housed in the SOT–553 package which is ideal for low power surface mount applications where board space is at a premium.

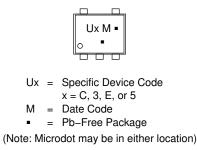
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted, common for Q_1 and Q_2 , – minus sign for Q_1 (PNP) omitted)


Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	۱ _C	100	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

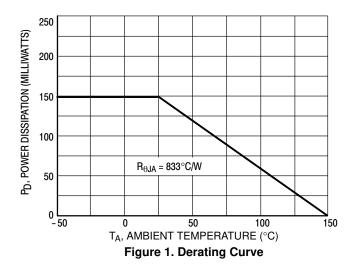
MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
ONE JUNCTION HEATED				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	PD	357 (Note 1) 2.9 (Note 1)	m₩ mW/°C	
Thermal Resistance, Junction-to-Ambient	R _{0JA}	350 (Note 1)	°C/W	
BOTH JUNCTIONS HEATED				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	PD	500 (Note 1) 4.0 (Note 1)	m₩ mW/°C	
Thermal Resistance, Junction-to-Ambient	R _{0JA}	250 (Note 1)	°C/W	
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C	

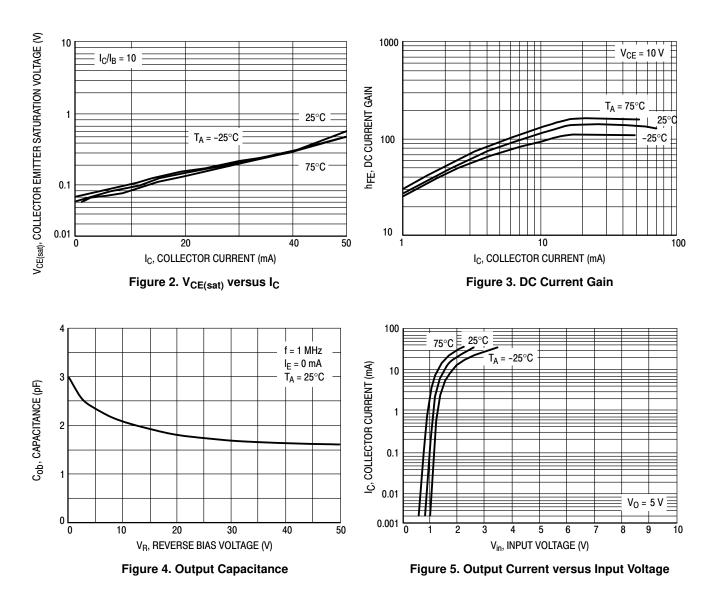

1. FR-4 @ Minimum Pad

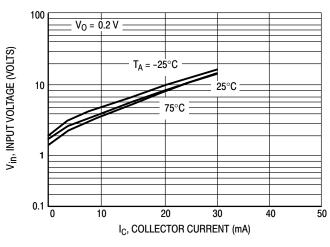
DEVICE ORDERING INFORMATION, MARKING AND RESISTOR VALUES

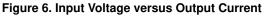
		Transisto	or 1 – PNP	Transistor 2 – NPN		Transistor 2 – NPN			
Device	Marking	R1 (K)	R2 (K)	R1 (K)	R2 (K)	Package	Shipping [†]		
EMC2DXV5T1G	UC	22	22	22	22		4000 / Tape & Reel		
NSVEMC2DXV5T1G*	UC	22	22	22	22		4000 / Tape & Reel		
EMC3DXV5T1G	110	10	10	10	10	SOT–553 (Pb–Free)	4000 / Tape & Reel		
EMC3DXV5T5G	U3	10	10	10	10		8000 / Tape & Reel		
EMC4DXV5T1G	UE	10	47	47	47		4000 / Tape & Reel		
EMC5DXV5T1G	U5	4.7	10	47	47		4000 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

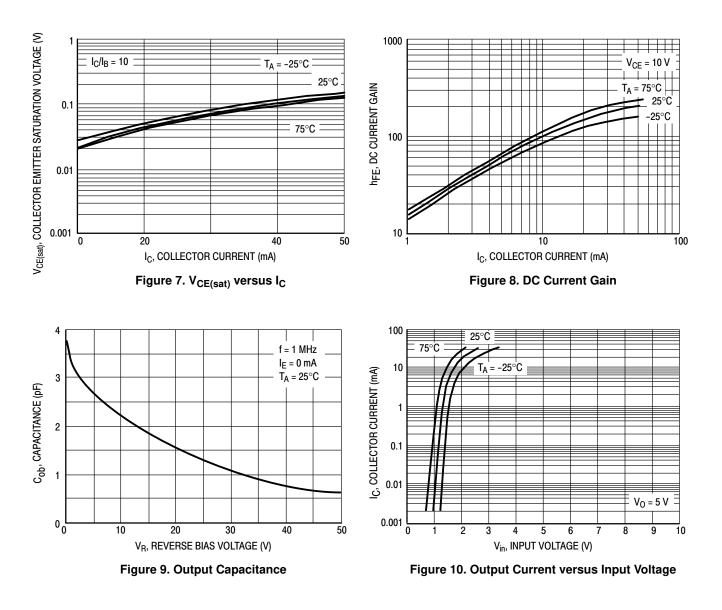
*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

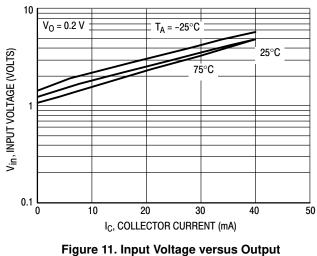


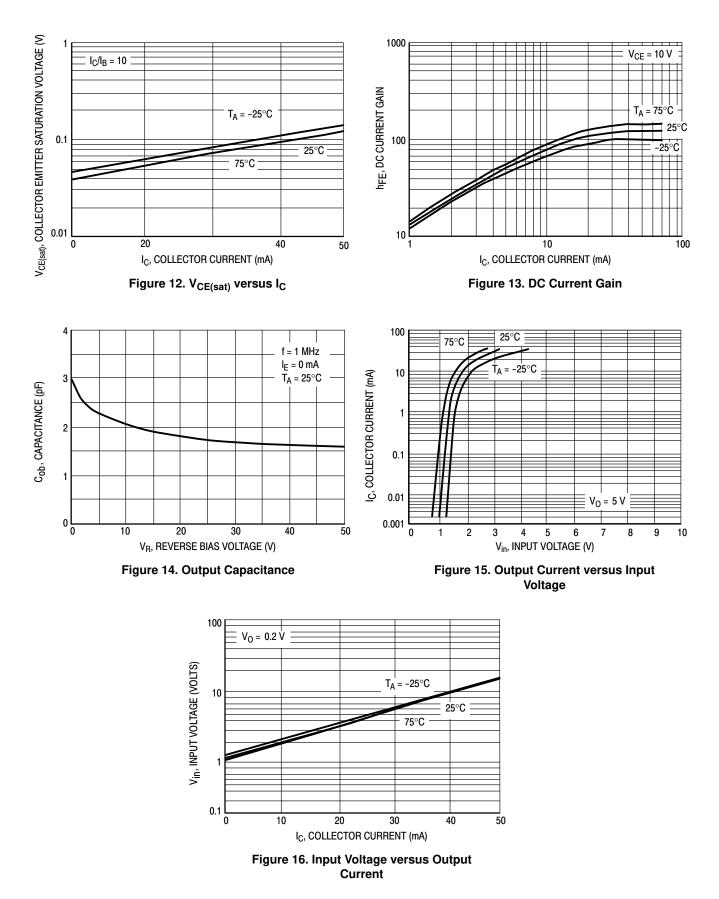

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise no	ted)
---	------

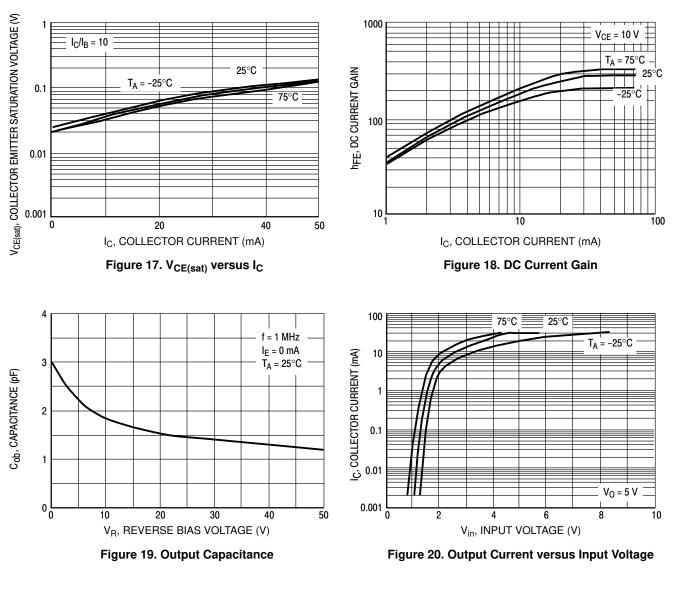

Cha	Symbol	Min	Тур	Max	Unit	
Q1 TRANSISTOR: PNP OFF CHARACTERISTICS						
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, \text{ I}_{E} = 0)$	I _{CBO}	_	_	100	nAdc
Collector-Emitter Cutoff Current	: (V _{CB} = 50 V, I _B = 0)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current ($V_{EB} = 6.0 \text{ V}, I_C = 0$)	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G	I _{EBO}	- - - -	- - - -	0.2 0.5 0.2 1.0	mAdc
ON CHARACTERISTICS						•
Collector-Base Breakdown Volt	age (I _C = 10 μA, I _E = 0)	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Vo	bltage ($I_{C} = 2.0 \text{ mA}, I_{B} = 0$)	V _{(BR)CEO}	50	-	-	Vdc
DC Current Gain $(V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA})$	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G	h _{FE}	60 35 80 20	100 60 140 35	_ _ _ _	
Collector-Emitter Saturation Vo	ltage (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(SAT)}	-	-	0.25	Vdc
Output Voltage (on) (V _{CC} = 5.0	V, V _B = 2.5 V, R _L = 1.0 kΩ)	V _{OL}	-	-	0.2	Vdc
Output Voltage (off) ($V_{CC} = 5.0$	V, V _B = 0.5 V, R _L = 1.0 kΩ)	V _{OH}	4.9	-	-	Vdc
Input Resistor	EMC2DXV5T1G EMC3DXV5T1G, EMC4DXV5T1G EMC5DXV5T1G	R1	15.4 7.0 3.3	22 10 4.7	28.6 13 6.1	kΩ
Resistor Ratio	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G EMC5DXV5T1G	R1/R2	0.8 0.8 0.17 0.38	1.0 1.0 0.21 0.47	1.2 1.2 0.25 0.56	
Q2 TRANSISTOR: NPN OFF CHARACTERISTICS						
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, \text{ I}_{E} = 0)$	I _{CBO}	-	-	100	nAdc
Collector-Emitter Cutoff Current	t (V _{CB} = 50 V, I _B = 0)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0)	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G	I _{EBO}	_ _ _	_ _ _	0.2 0.5 0.1	mAdc
ON CHARACTERISTICS					•	•
Collector-Base Breakdown Volt	age (I _C = 10 μA, I _E = 0)	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Vo	bltage ($I_{C} = 2.0 \text{ mA}, I_{B} = 0$)	V _{(BR)CEO}	50	-	-	Vdc
DC Current Gain $(V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA})$	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G	h _{FE}	60 35 80	100 60 140	- - -	
Collector-Emitter Saturation Vo	Itage (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(SAT)}	-	-	0.25	Vdc
Output Voltage (on) (V _{CC} = 5.0	V _{OL}	_	_	0.2	Vdc	
Output Voltage (off) ($V_{CC} = 5.0$		V _{OH}	4.9	_	_	Vdc
Input Resistor	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G	R1	15.4 7.0 33	22 10 47	28.6 13 61	kΩ
Resistor Ratio	EMC2DXV5T1G EMC3DXV5T1G EMC4DXV5T1G, EMC5DXV5T1G	R1/R2	0.8 0.8 0.8	1.0 1.0 1.0	1.2 1.2 1.2	

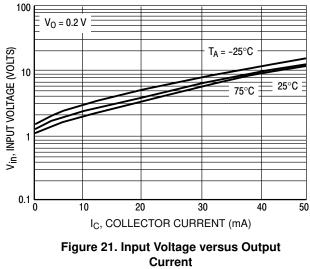
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL ELECTRICAL CHARACTERISTICS – EMC2DXV5T1 PNP TRANSISTOR




TYPICAL ELECTRICAL CHARACTERISTICS – EMC2DXV5T1 NPN TRANSISTOR




Current

TYPICAL ELECTRICAL CHARACTERISTICS – EMC3DXV5T1 PNP TRANSISTOR

TYPICAL ELECTRICAL CHARACTERISTICS – EMC3DXV5T1 NPN TRANSISTOR

TYPICAL ELECTRICAL CHARACTERISTICS - EMC4DXV5T1 PNP TRANSISTOR

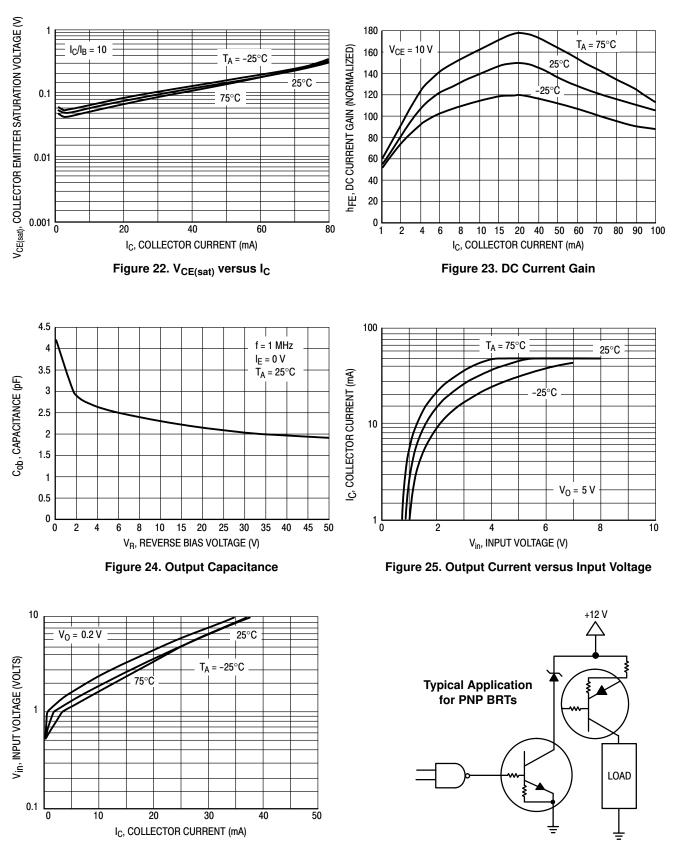


Figure 26. Input Voltage versus Output Current

Figure 27. Inexpensive, Unregulated Current Source

TYPICAL ELECTRICAL CHARACTERISTICS – EMC5DXV5T1 PNP TRANSISTOR

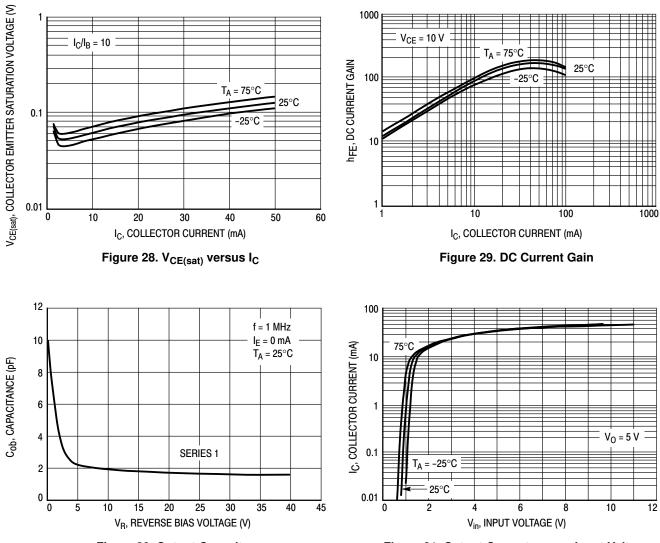


Figure 30. Output Capacitance

Figure 31. Output Current versus Input Voltage

TYPICAL ELECTRICAL CHARACTERISTICS - EMC4DXV5T1, EMC5DXV5T1 NPN TRANSISTOR

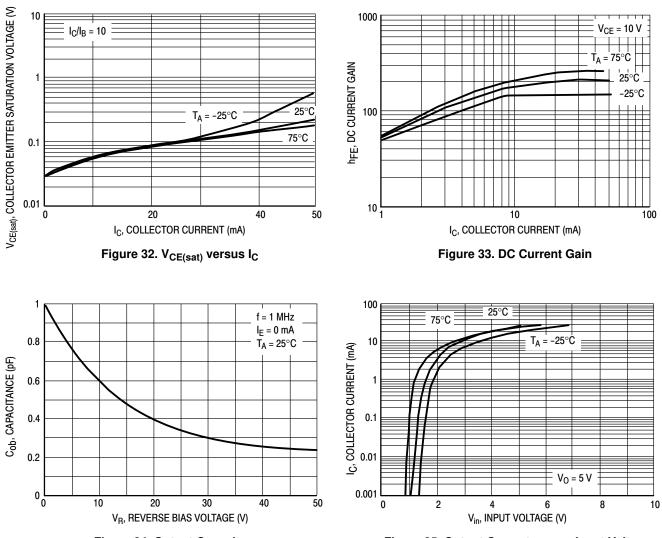


Figure 34. Output Capacitance

Figure 35. Output Current versus Input Voltage

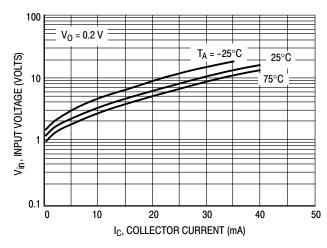
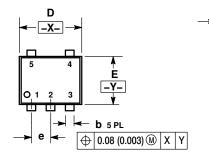
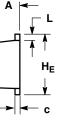
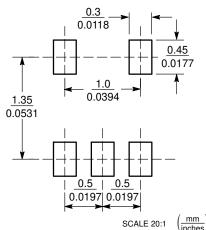




Figure 36. Input Voltage versus Output Current

PACKAGE DIMENSIONS

SOT-553, 5 LEAD CASE 463B ISSUE C


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
е	0.50 BSC			0.020 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
ΗE	1.55	1.60	1.65	0.061	0.063	0.065	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components instended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized applicable copyright as mediated programs and claims of the resard with such unintended tor unauthorized soluto use, even if such claim alle

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative