

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







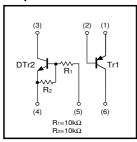
# Power management (dual transistors)

### EMF21 / UMF21N

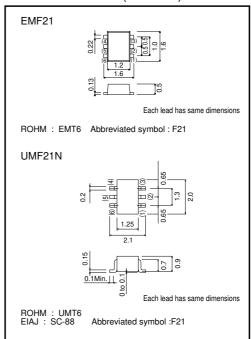
2SA2018 and DTC114E are housed independently in a EMT6 or UMT6 package.

#### Application

Power management circuit


#### ● Features

- 1) Power switching circuit in a single package.
- 2) Mounting cost and area can be cut in half.


#### ●Structure

Silicon epitaxial planar transistor

#### Equivalent circuits



#### ●External dimensions (Units : mm)



#### Package, marking, and packaging specifications

| Туре                        | EMF21 | UMF21N |
|-----------------------------|-------|--------|
| Package                     | EMT6  | UMT6   |
| Marking                     | F21   | F21    |
| Code                        | T2R   | TR     |
| Basic ordering unit(pieces) | 8000  | 3000   |

#### ● Absolute maximum ratings (Ta=25°C)

#### Tr1

| Parameter                    | Symbol | Limits          | Unit  |
|------------------------------|--------|-----------------|-------|
| Collector-base voltage       | Vсво   | -15             | V     |
| Collector-emitter voltage    | Vceo   | -12             | V     |
| Emitter-base voltage         | VEBO   | -6              | V     |
| Collector current            | Ic     | -500            | mA    |
| Collector current            | Іср    | -1.0            | A *1  |
| Power dissipation            | Pc     | 150(TOTAL)      | mW *2 |
| Junction temperature         | Tj     | 150             | °C    |
| Range of storage temperature | Tstg   | <b>−55~+150</b> | °C    |

#### DTr2

| Parameter                    | Symbol | Limits           | Unit  |
|------------------------------|--------|------------------|-------|
| Supply voltage               | Vcc    | 50               | V     |
| Input voltage                | Vin    | <b>−10~+40</b>   | V     |
| Collector current            | Ic     | 100              | mA *1 |
| Output current               | lo     | 50               | mA    |
| Power dissipation            | Pc     | 150(TOTAL)       | mW *2 |
| Junction temperature         | Tj     | 150              | °C    |
| Range of storage temperature | Tstg   | <i>–</i> 55∼+150 | °C    |

<sup>\*1</sup> Characteristics of built-in transistor.

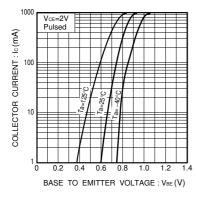
#### ● Electrical characteristics (Ta=25°C)

#### Tr1

| Parameter                            | Symbol               | Min. | Тур. | Max. | Unit | Conditions                                         |
|--------------------------------------|----------------------|------|------|------|------|----------------------------------------------------|
| Collector-emitter breakdown voltage  | BVceo                | -12  | _    | _    | V    | Ic=-1mA                                            |
| Collector-base breakdown voltage     | ВУсво                | -15  | _    | _    | V    | Ic=-10μA                                           |
| Emitter-base breakdown voltage       | BVEBO                | -6   | _    | _    | V    | I <sub>E</sub> =-10μA                              |
| Collector cut-off current            | Ісво                 | _    | _    | -100 | nA   | V <sub>CB</sub> =-15V                              |
| Emitter cut-off current              | ІЕВО                 | _    | _    | -100 | nA   | V <sub>EB</sub> =-6V                               |
| Collector-emitter saturation voltage | V <sub>CE(sat)</sub> | _    | -100 | -250 | mV   | Ic=-200mA, I <sub>B</sub> =-10mA                   |
| DC current gain                      | hfe                  | 270  | _    | 680  | -    | Vce=-2V, Ic=-10mA                                  |
| Transition frequency                 | f⊤                   | _    | 260  | _    | MHz  | Vce=-2V, Ie=10mA, f=100MHz                         |
| Collector output capacitance         | Cob                  | _    | 6.5  | _    | рF   | V <sub>CB</sub> =-10V, I <sub>E</sub> =0mA, f=1MHz |

#### DTr2

| Parameter            | Symbol             | Min. | Тур. | Max. | Unit | Conditions                   |
|----------------------|--------------------|------|------|------|------|------------------------------|
| lancit valta e a     | VI(off)            | -    | -    | 0.5  | ,,   | Vcc=5V, Io=100μA             |
| Input voltage        | V <sub>I(on)</sub> | 3    | _    | _    | V    | Vo=0.3V, Io=10mA             |
| Output voltage       | V <sub>O(on)</sub> | -    | 0.1  | 0.3  | ٧    | lo/l⊫10mA/0.5mA              |
| Input current        | lı                 | -    | _    | 0.88 | mA   | V=5V                         |
| Output current       | IO(off)            | -    | -    | 0.5  | μΑ   | Vcc=50V, Vi=0V               |
| DC current gain      | Gı                 | 30   | _    | _    | -    | Vo=5V, Io=5mA                |
| Input resistance     | R <sub>1</sub>     | 7    | 10   | 13   | kΩ   | _                            |
| Resistance ratio     | R2/R1              | 0.8  | 1    | 1.2  | -    | -                            |
| Transition frequency | f⊤                 | -    | 250  | -    | MHz  | Vce=10V, Ie=-5mA, f=100MHz * |


<sup>\*</sup> Transition frequency of the device

<sup>\*1</sup> Single pulse Pw=1ms
\*2 120mW per element must not be exceeded.
Each terminal mounted on a recommended land.

<sup>\*2</sup> Each terminal mounted on a recommended land.

#### Electrical characteristic curves

#### Tr1



1000 VGE=2V Pulsed
Ta=25°C
Ta=25°C
Ta=-40°C
Ta=-40°C
Ta=-40°C
COLLECTOR CURRENT: Ic (mA)

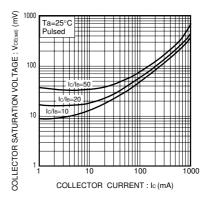
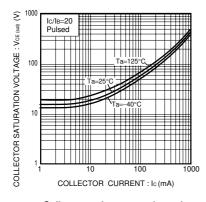
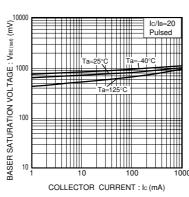





Fig.1 Grounded emitter propagation characteristics

Fig.2 DC current gain vs. collector current

Fig.3 Collector-emitter saturation voltage vs. collector current ( I )





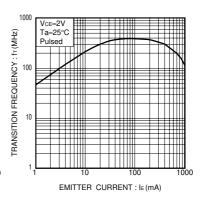



Fig.4 Collector-emitter saturation voltage vs. collector current ( II )

Fig.5 Base-emitter saturation voltage vs. collector current

Fig.6 Gain bandwidth product vs. emitter current

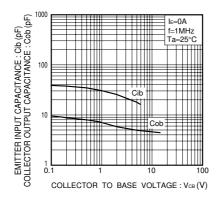



Fig.7 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage

# 

Fig.1 Input voltage vs. output current (ON characteristics)

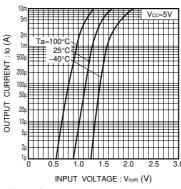



Fig.2 Output current vs. input voltage (OFF characteristics)

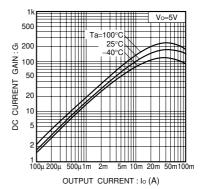



Fig.3 DC current gain vs. output current

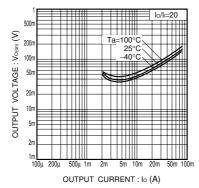



Fig.4 Output voltage vs. output current

#### **Notes**

- No technical content pages of this document may be reproduced in any form or transmitted by any
  means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
  product described in this document are for reference only. Upon actual use, therefore, please request
  that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
  use and operation. Please pay careful attention to the peripheral conditions when designing circuits
  and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
  otherwise dispose of the same, no express or implied right or license to practice or commercially
  exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
   Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

