

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

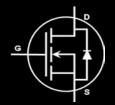
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

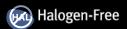
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



eGaN® FET DATASHEET EPC2010


EPC2010 – Enhancement Mode Power Transistor

 V_{DSS} , 200 V $R_{DS(ON)}$, $25\,m\Omega$ I_D , 12 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(ON)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
V_{DS}	Drain-to-Source Voltage	200	V		
	Continuous ($T_A = 25^{\circ}C$, $\theta_{JA} = 17$)	12	Α		
l _D	Pulsed (25°C, Tpulse = 300 μs)	60			
V	Gate-to-Source Voltage	6	V		
V _{GS}	Gate-to-Source Voltage	-5			
T,	Operating Temperature	-40 to 125	°C		
T _{STG}	Storage Temperature	-40 to 150			

EPC2010 eGaN® FETs are supplied only in passivated die form with solder bars

Applications

- High Speed DC-DC conversion
- · Class D Audio
- Hard Switched and High Frequency Circuits

Benefits

- · Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- · Ultra small footprint

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tatic Characte	eristics (T _J = 25°C unless otherwise state	ed)				
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 200 \mu\text{A}$	200			V
I _{DSS}	Drain Source Leakage	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$		50	150	μΑ
1	Gate-Source Forward Leakage	$V_{GS} = 5 V$		1	3	- mA
I _{GSS}	Gate-Source Reverse Leakage	$V_{GS} = -5 \text{ V}$		0.2	1	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.7	1.4	2.5	V
$R_{DS(ON)}$	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_{D} = 6 \text{ A}$		18	25	mΩ
ource-Drain C	haracteristics (T _J = 25°C unless otherw	vise stated)				
W	Common Durin Formand Valley as	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}, T = 25^{\circ}\text{C}$		1.8		.,
V_{SD}	Source-Drain Forward Voltage	I _S = 0.5 A, V _{GS} = 0 V, T = 125°C		1.8		i v

Thermal Characteristics				
		TYP		
$R_{ heta JC}$	Thermal Resistance, Junction to Case	2.4	°C/W	
$R_{\scriptscriptstyle heta JB}$	Thermal Resistance, Junction to Board	16	°C/W	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	56	°C/W	

Note 1: $R_{\scriptscriptstyle 0JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. eGaN® FET DATASHEET EPC2010

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
Dynamic Chara	Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
C _{ISS}	Input Capacitance			480	540		
Coss	Output Capacitance	$V_{DS} = 100 V, V_{GS} = 0 V$		270	350	pF	
C _{RSS}	Reverse Transfer Capacitance			9.2	12		
Q_G	Total Gate Charge (V _{GS} = 5 V)			5	7.5		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 100 \text{ V}, I_{D} = 12 \text{ A}$		1.7	2.6		
Q_{GS}	Gate to Source Charge			1.3	2	nC	
Q _{oss}	Output Charge	$V_{DS} = 100 V, V_{GS} = 0 V$		40	50		
Q_{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate shorted to source.

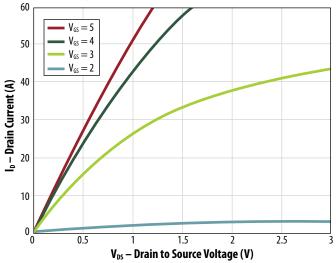


Figure 2: Transfer Characteristics

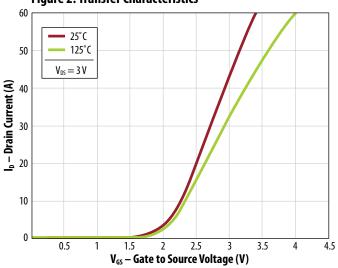
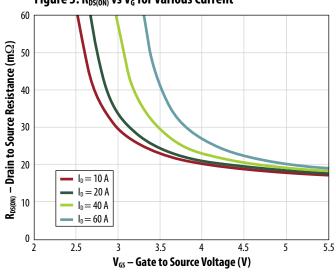
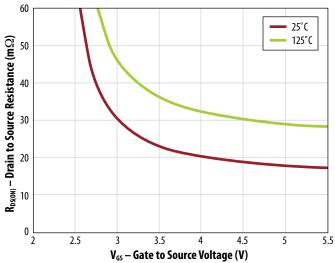
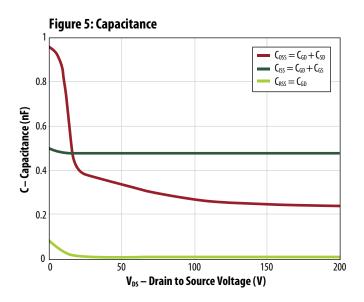
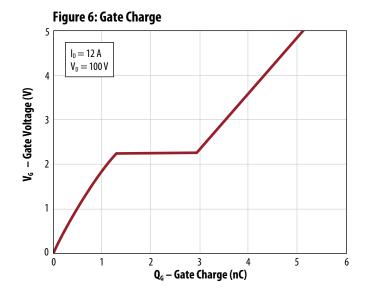
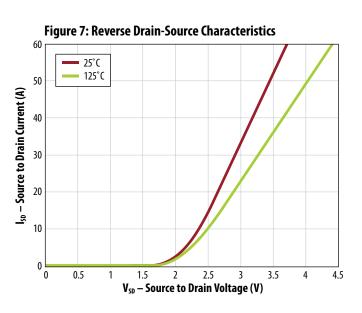
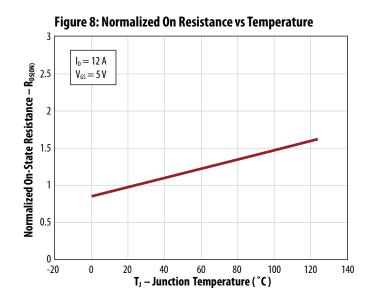
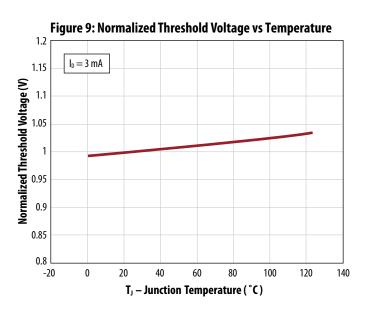


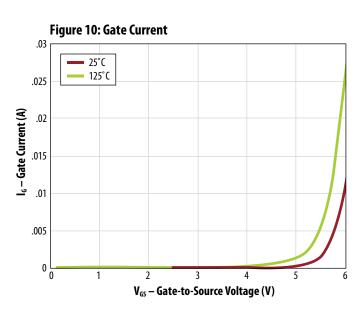
Figure 3: R_{DS(ON)} vs V_G for Various Current

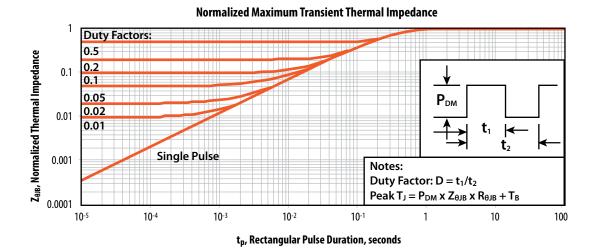






Figure 4: R_{DS(ON)} vs V_G for Various Temperature




eGaN® FET DATASHEET EPC2010





All measurements were done with substrate shortened to source.

eGaN® FET DATASHEET EPC2010

Figure 11: Transient Thermal Response Curves

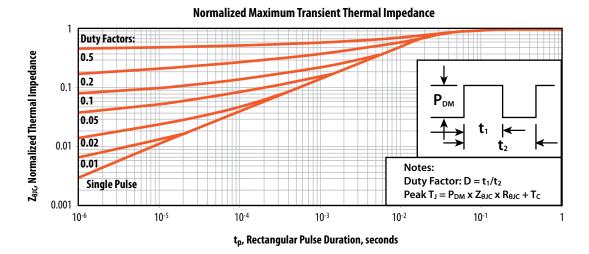
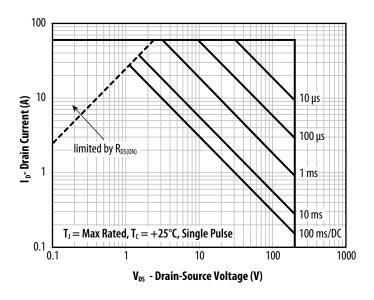
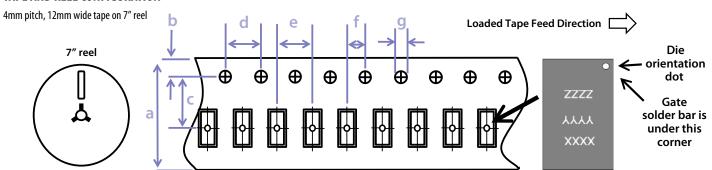
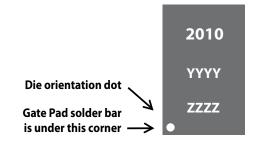




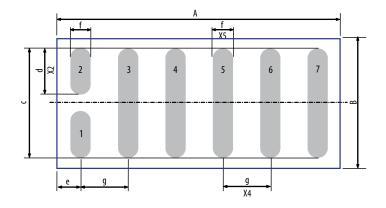
Figure 12: Safe Operating Area

EPC2010 eGaN® FET DATASHEET

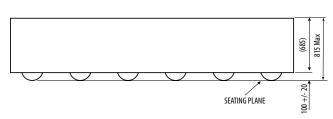

TAPE AND REEL CONFIGURATION

EPC2010 (note 1) Dimension (mm) target min 11.9 12.3 12.0 b 1.75 1.65 1.85 5.45 c (note 2) 5.50 5.55 3.90 d 4.00 4.10 4.00 3.90 4.10 e f (note 2) 2.00 1.95 2.05 g 1.5 1.5 1.6 Die is placed into pocket solder bar side down (face side down)

Note 1: MSL1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

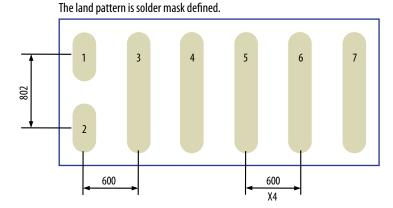

DIE MARKINGS

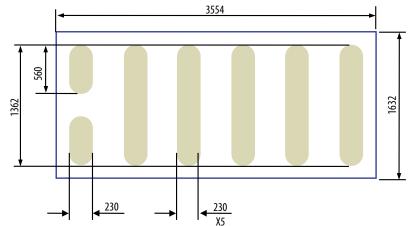
Dovt		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
EPC2010	2010	YYYY	ZZZZ


DIE OUTLINE

Solder Bar View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
A	3524	3554	3584		
В	1602	1632	1662		
C	1379	1382	1385		
d	577	580	583		
e	262	277	292		
f	245	250	255		
g	600	600	600		


Side View


eGaN® FET DATASHEET EPC2010

RECOMMENDED LAND PATTERN

(units in µm)

Pad no. 1 is Gate; Pads no. 3, 5, 7 are Drain; Pads no. 4, 6 are Source; Pad no. 2 is Substrate

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to $improve\ reliability, function\ or\ design.\ EPC\ does\ not\ assume\ any\ liability\ arising\ out\ of\ the\ application\ or\ use\ of\ any\ product\ or\ circuit$ described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ} \ is \ a \ registered \ trademark \ of \ Efficient \ Power \ Conversion \ Corporation.$

U.S. Patent 8,350,294

Information subject to change without notice. Revised February, 2013