imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

eGaN® FET DATASHEET

EPC2019

Halogen-Free

EPC2019 – Enhancement Mode Power Transistor

V_{DSS} , 200 V R_{DS(on)} , 50 mΩ I_D , 8.5 A NEW PRODUCT

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
V _{DS}	Drain-to-Source Voltage (Continuous) 200				
	Continuous ($T_A = 25^{\circ}C, R_{BJA} = 18^{\circ}C/W$)	8.5	A		
I _D	Pulsed (25°C, T _{Pulse} = 300 μs)	42			
V _{GS}	Gate-to-Source Voltage	6	V		
	Gate-to-Source Voltage	-4	V		
Tj	Operating Temperature -40 to		°C		
T _{STG}	Storage Temperature -40 to 150				

EFFICIENT POWER CONVERSION

EPC2019 eGaN® FETs are supplied only in passivated die form with solder bars

Applications

RoHS M

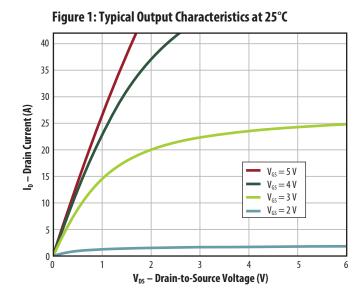
- High Speed DC-DC conversion
- Class-D Audio
- High Frequency Hard-Switching and Soft-Switching Circuits

Benefits

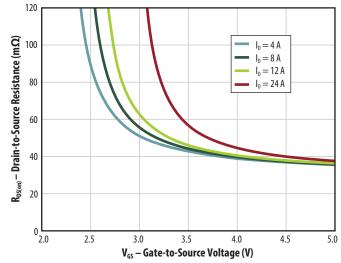
- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- Ultra small footprint

www.epc-co.com/epc/Products/eGaNFETs/EPC2019.aspx

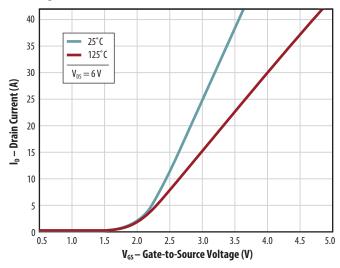
Static Characteristics (T _j = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V$, $I_D = 125 \mu A$	200			V
I _{DSS}	Drain Source Leakage	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$		20	100	μA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.8	2.5	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		20	100	μΑ
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1.5 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 7 \text{ A}$		36	50	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_{S} = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V

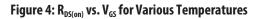

All measurements were done with substrate shorted to source.

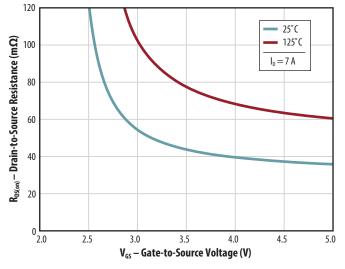
Thermal Characteristics				
		ТҮР	UNIT	
R _{θJC}	Thermal Resistance, Junction to Case	2.7	°C/W	
R _{θJB}	Thermal Resistance, Junction to Board	7.5	°C/W	
R _{eja}	Thermal Resistance, Junction to Ambient (Note 1)	72	°C/W	


Note 1: R_{utA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Dynamic Characteristics ($T_J = 25^{\circ}C$ unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
C _{ISS}	Input Capacitance			200	270	
Coss	Output Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		110	150	рF
C _{RSS}	Reverse Transfer Capacitance			0.7	1	
R _G	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 7 \text{ A}$		1.8	2.5	
Q_{GS}	Gate-to-Source Charge			0.6]
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 100 \text{ V}, I_{D} = 7 \text{ A}$		0.35	0.6	nC
$Q_{G(TH)}$	Gate Charge at Threshold			0.4		
Q _{oss}	Output Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		18	23]
Q _{RR}	Source-Drain Recovery Charge			0]


All measurements were done with substrate shorted to source.





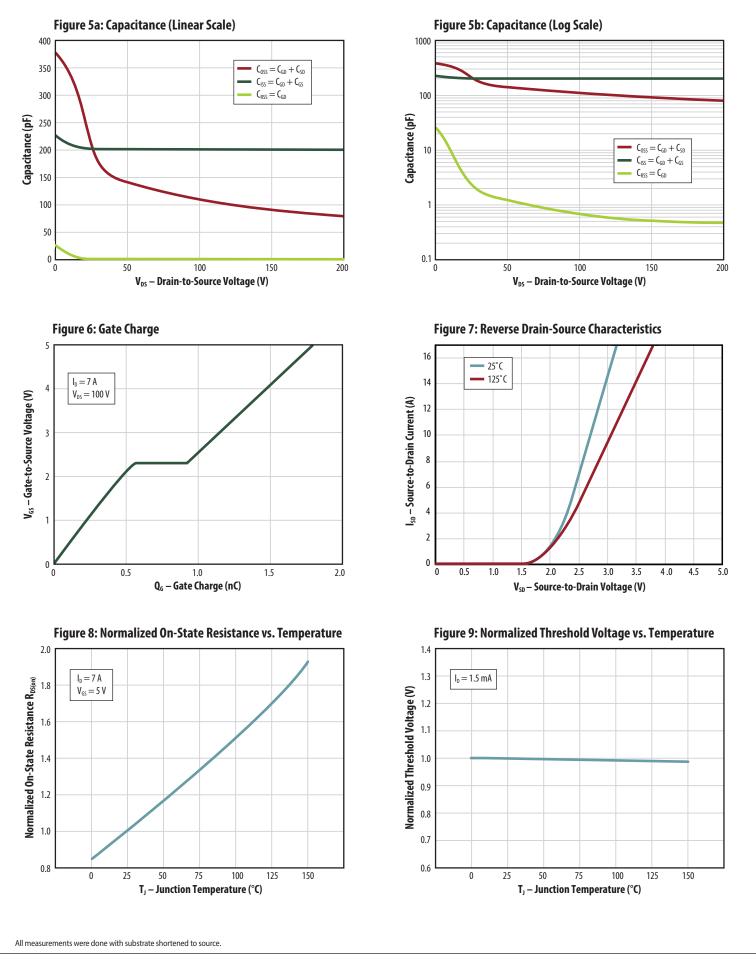
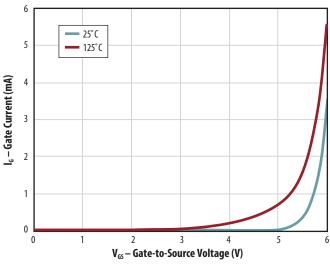
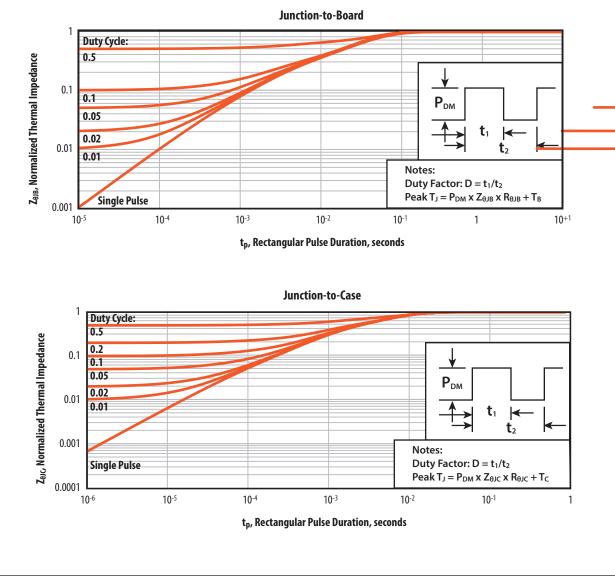


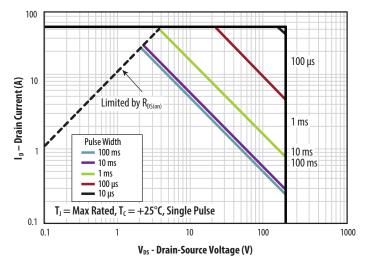
Figure 2: Transfer Characteristics

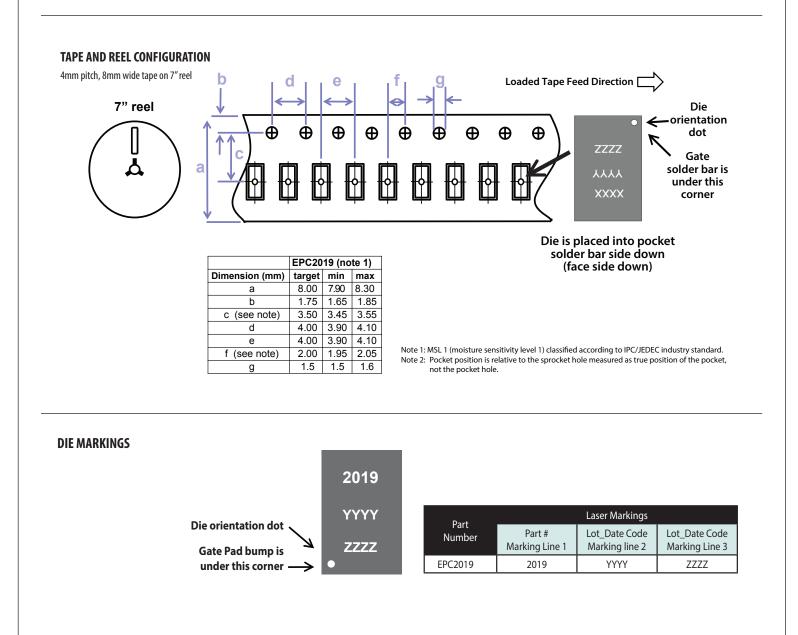


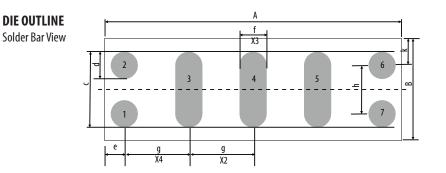


EPC2019

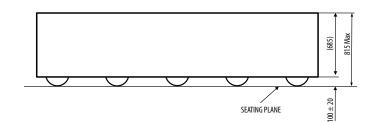
Figure 10: Gate Leakage Current







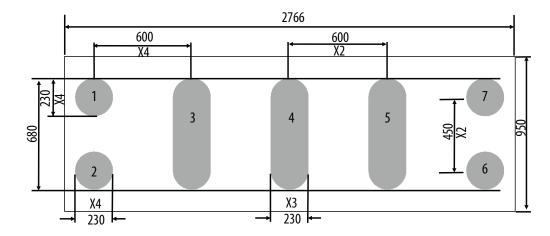
EPC2019



Side View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
Α	2736	2766	2796		
В	920	950	980		
c	697	700	703		
d	247	250	253		
e	168	183	198		
f	245	250	255		
g	600	600	600		
h	450	450	450		
i	235	250	265		

EPC2019

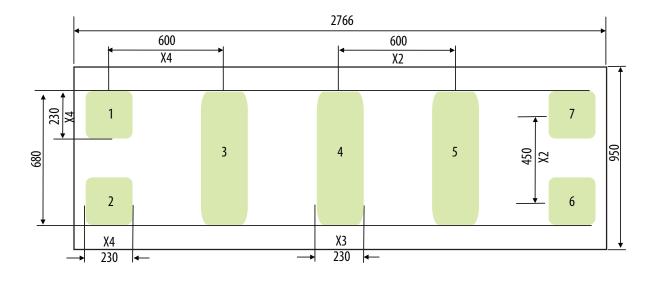

Pad no.1 is Gate

Pad no. 3, 5 are Drain Pad no. 2, 4, 6 are Source Pad no. 7 is Substrate

Recommended Land Pattern

(Units in µm)

Pad no. 1 is Gate Pad no. 3, 5 are Drain Pad no. 2, 4, 6 are Source Pad no. 7 is Substrate


The land pattern shown is solder mask defined. Copper is larger than the solder mask opening. The solder mask is 10um smaller per side than the bump.

RECOMMENDED STENCIL

(Units in µm)

υπις π μπ)

Pad no.1 is Gate Pad no. 3, 5 are Drain Pad no. 2, 4, 6 are Source Pad no. 7 is Substrate

Recommended stencil should be 4mil (100µm) thick, must be laser cut, openings per drawing. The solder stencil is 10µm smaller per side than the bump. The corner has a radius of R60

For assembly recommendations please visit http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN[®] is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice. revised September, 2015