imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

eGaN® FET DATASHEET

EPC2024

(HAL) Halogen-Free


EPC2024 – Enhancement Mode Power Transistor

V_{DSS} , 40 V R_{DS(on)} , 1.5 mΩ I_D , 90 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 60 years. GaN's exceptionally high electron mobility allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings			
V _{DS}	Drain-to-Source Voltage (Continuous)	40	V	
V DS	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48 V		
	Continuous ($T_A = 25^{\circ}C$, $R_{\Theta JA} = 6^{\circ}C/W$)	90	Δ	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	560	A	
V	Gate-to-Source Voltage	6		
V_{GS}	Gate-to-Source Voltage	-4	V	
T,	Operating Temperature -40 to 150		°C	
T _{STG}	Storage Temperature	-40 to 150		

EFFICIENT POWER CONVERSION

EPC2024 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 6.05 mm x 2.3 mm

Applications

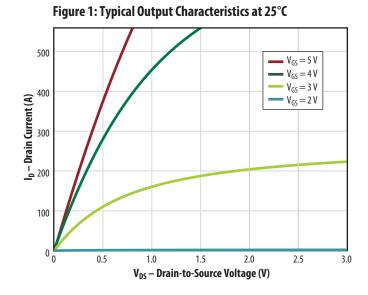
RoHS (P)

- High Frequency DC-DC Conversion
- Motor Drive
- Industrial Automation
- Synchronous Rectification
- Inrush Protection
- Point-of-Load (POL) Converters

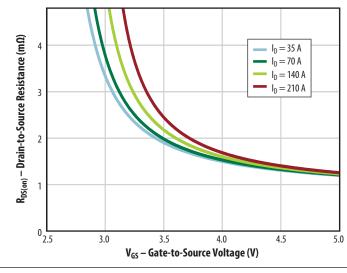
www.epc-co.com/epc/Products/eGaNFETs/EPC2024.aspx

	Static Characteristics ($T_J = 25^{\circ}C$ unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_D = 1.1 mA$	40			V
I _{DSS}	Drain Source Leakage	$V_{DS} = 32 V, V_{GS} = 0 V$		0.1	0.9	mA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		1	9	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.1	0.9	mA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}$, $I_{\text{D}} = 19 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source on Resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 37 \text{ A}$		1.2	1.5	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_{S} = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V

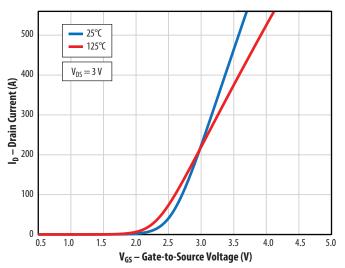
All measurements were done with substrate shorted to source.

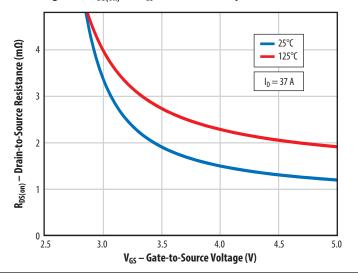

Thermal Characteristics				
		ТҮР	UNIT	
R _{ojc}	Thermal Resistance, Junction to Case	0.4	°C/W	
R _{⊖JB}	Thermal Resistance, Junction to Board	1.1	°C/W	
R _{oja}	Thermal Resistance, Junction to Ambient (Note 1)	42	°C/W	

Note 1: R_{0/A} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.


1

	Dynamic Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			1920	2300	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 20 V, V_{GS} = 0 V$		29		
C _{oss}	Output Capacitance			1620	2430	
C _{OSS(ER)}	Effective Output Capacitance Energy Related (Note 2)	V 01-20V/V 0V		2050		pF
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 20 V, $V_{GS} = 0$ V		2240		
R _G	Gate Resistance			0.3		Ω
Q _G	Total Gate Charge	$V_{DS} = 20 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 37 \text{ A}$		18	24	
Q _{GS}	Gate-to-Source Charge			5.1		
Q _{GD}	Gate-to-Drain Charge	$V_{\text{DS}} = 20 \text{ V}, \text{ I}_{\text{D}} = 37 \text{ A}$		2.4		
Q _{G(TH)}	Gate Charge at Threshold			3.8		nC
Q _{oss}	Output Charge	$V_{DS} = 20 V, V_{GS} = 0 V$		45	68	
Q _{RR}	Source-Drain Recovery Charge			0		


Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.



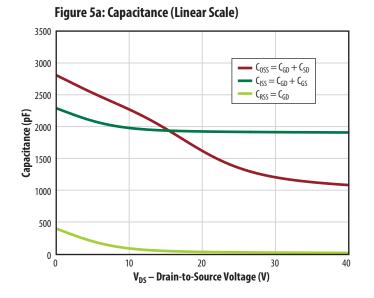

Figure 2: Transfer Characteristics

Figure 4: $R_{DS(on)}\,vs.\,V_{GS}$ for Various Temperatures

EPC – EFFICIENT POWER CONVERSION CORPORATION WWW.EPC-CO.COM COPYRIGHT 2016

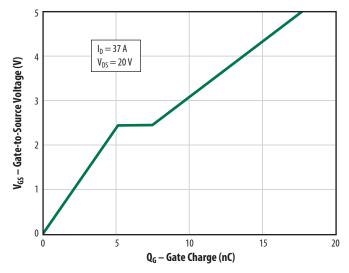


Figure 8: Normalized On-State Resistance vs. Temperature

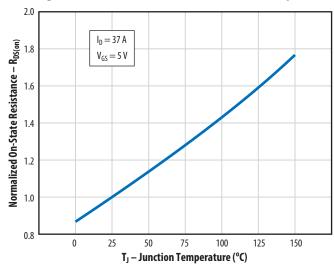


Figure 5b: Capacitance (Log Scale)

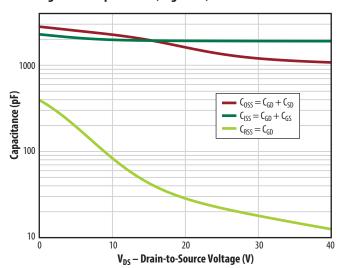


Figure 7: Reverse Drain-Source Characteristics

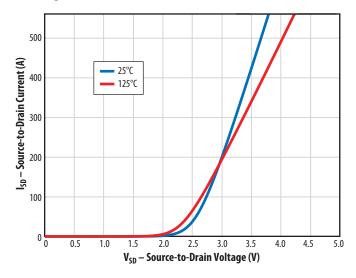
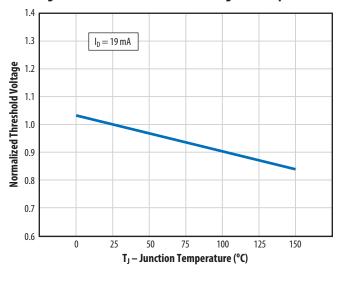
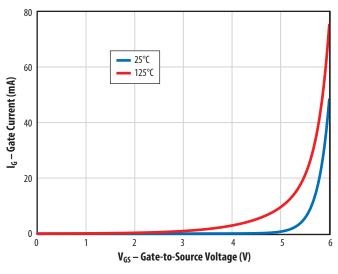
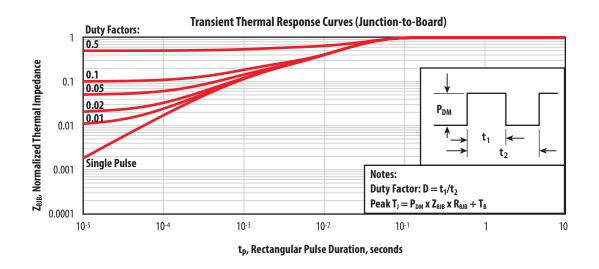




Figure 9: Normalized Threshold Voltage vs. Temperature



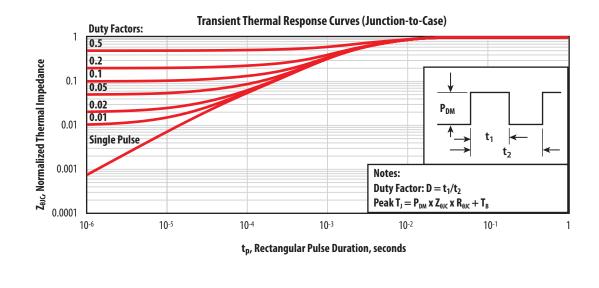

All measurements were done with substrate shortened to source. $T_J = 25^{\circ}C$ unless otherwise stated

Figure 10: Gate Leakage Current

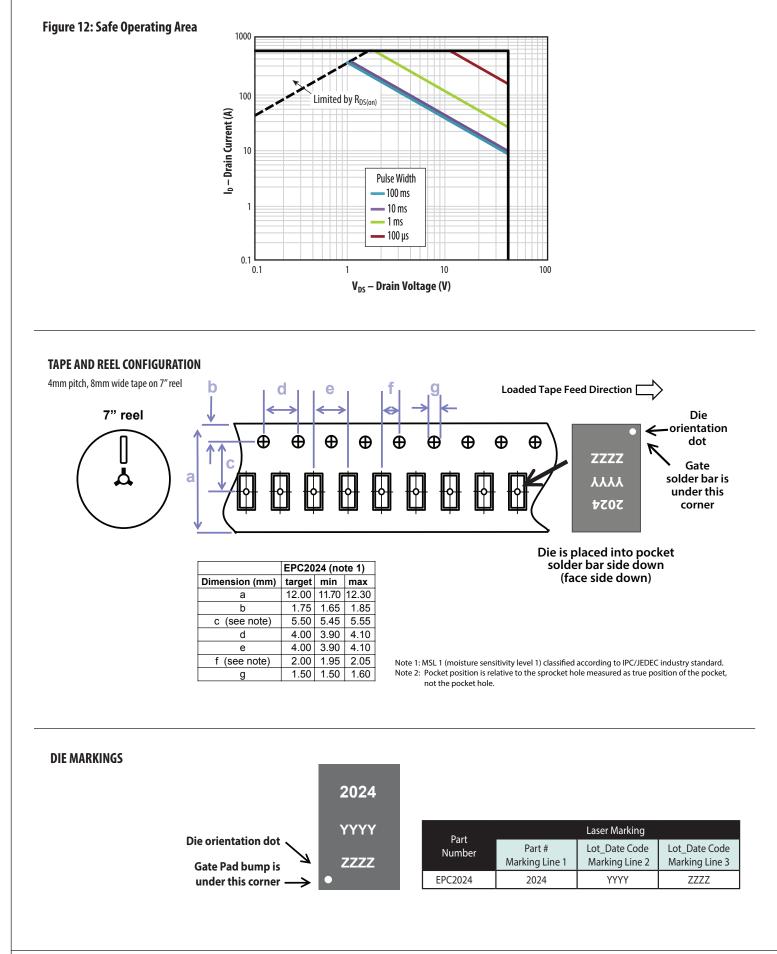
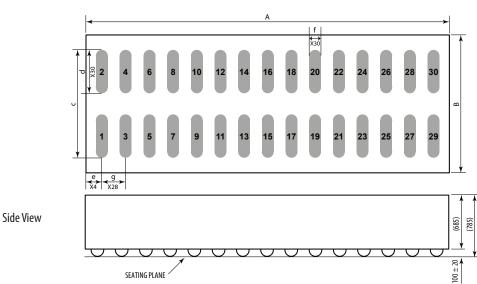
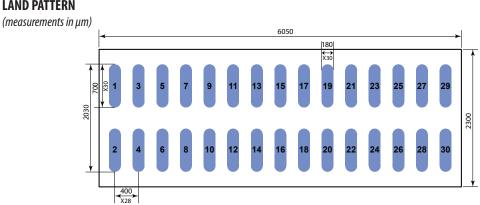


Figure 11: Transient Thermal Response Curves



EPC2024

DIE OUTLINE


Solder Bar View

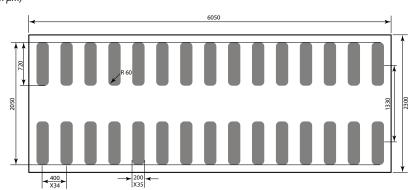
EPC2024

	Micrometers			
DIM	MIN	Nominal	МАХ	
Α	6020	6050	6080	
В	2270	2300	2330	
c	2047	2050	2053	
d	717	720	723	
е	210	225	240	
f	195	200	205	
g	400	400	400	

RECOMMENDED LAND PATTERN

Land pattern is solder mask defined Solder mask opening is 180 µm It is recommended to have on-Cu trace PCB vias

Pad no. 1 is Gate Pads no. 2,5,6,9,10,13,14,17,18,21,22, 25,26,29 are Source Pads no. 3,4,7,8,11,12,15,16,19,20,23, 24,27,28 are Drain Pad no. 30 is Substrate


Recommended stencil should be 4 mil (100 $\mu m)$ thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

RECOMMENDED STENCIL DRAWING

(measurements in µm)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 eGaN^{\otimes} is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice. Revised July, 2016