

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

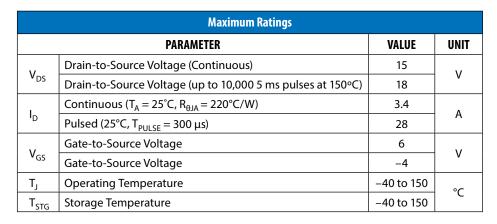
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EPC2040 eGaN® FET DATASHEET

EPC2040 – Enhancement Mode Power Transistor

 $V_{\rm DSS}$, 15 V $R_{DS(on)}$, 30 m Ω $\overline{I_D}$, 3.4 A



Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 60 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

EPC2040 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 0.85 mm x 1.25 mm

Applications

- High Speed DC-DC conversion
- LiDAR/Pulsed Power Applications
- LiDAR for Augmented Reality Applications

Benefits

- · Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

www.epc-co.com/epc/Products/eGaNFETs/EPC2040.aspx

Static Characteristics (T _J = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	15			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}$		10	250	mA
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V}$		0.1	1.2	mA
	Gate-to-Source Reverse Leakage	V _{GS} = -4 V		10	250	mA
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, I}_{D} = 1.5 \text{ A}$		24	30	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		2.2		V

All measurements were done with substrate shorted to source.

Thermal Characteristics				
	PARAMETER TYP UNI			
R _{ØJC}	Thermal Resistance, Junction-to-Case	5.7		
R _{ØJB}	Thermal Resistance, Junction-to-Board	19	°C/W	
$R_{\emptyset JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	97		

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			86	105	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 6 \text{ V}, V_{GS} = 0 \text{ V}$		20		
C _{OSS}	Output Capacitance			67	100	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+- (VV 0V		106		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 6 V, $V_{GS} = 0$ V		87		
R_G	Gate Resistance			0.5		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 6 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 1.5 \text{ A}$		745	925	
Q_{GS}	Gate to Source Charge			230		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 6 \text{ V}, I_{D} = 1.5 \text{ A}$		140		
Q _{G(TH)}	Gate Charge at Threshold			165		pC
Q _{OSS}	Output Charge	$V_{DS} = 6 \text{ V}, V_{GS} = 0 \text{ V}$		420	630	
Q _{RR}	Source-Drain Recovery Charge			0		

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

Figure 1: Typical Output Characteristics at 25°C

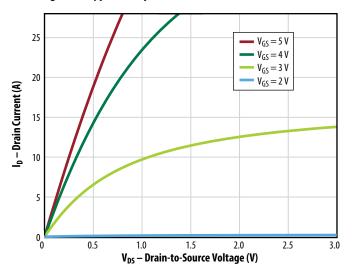


Figure 3: $R_{\text{DS(on)}}\,\text{vs.}\,V_{\text{GS}}$ for Various Drain Currents

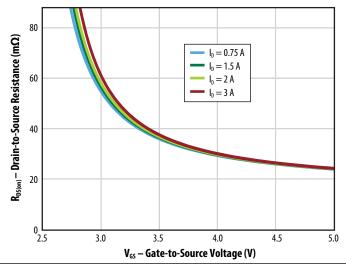


Figure 2: Transfer Characteristics

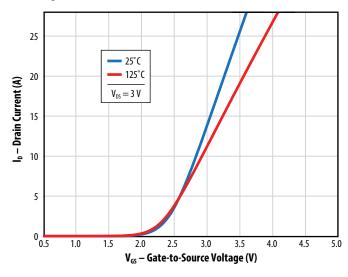


Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

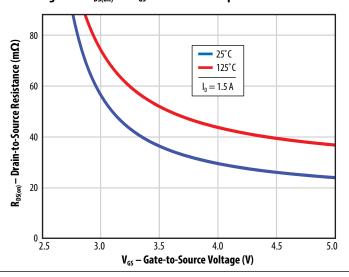


Figure 5a: Capacitance (Linear Scale)

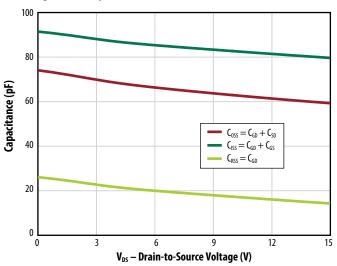


Figure 5b: Capacitance (Log Scale)

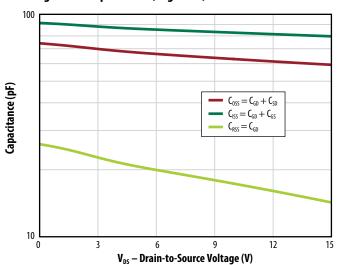
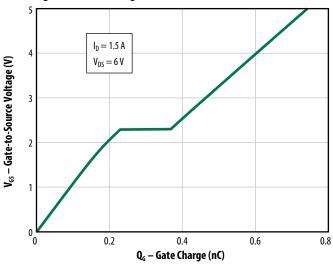



Figure 6: Gate Charge

Figure 7: Reverse Drain-Source Characteristics

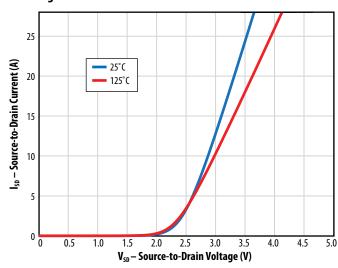
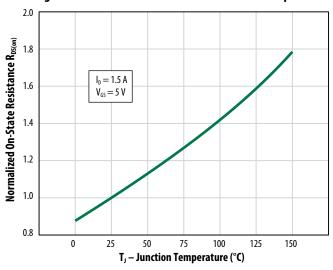
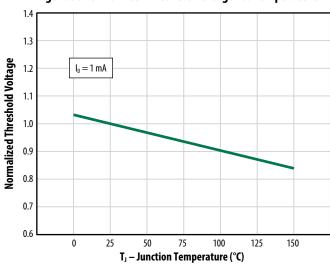
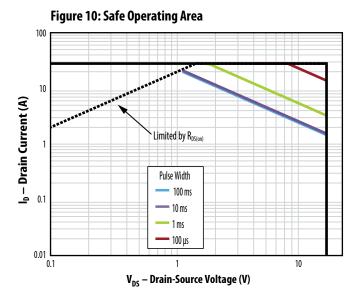
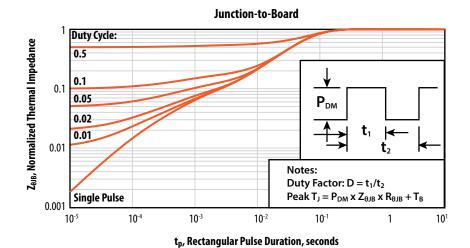
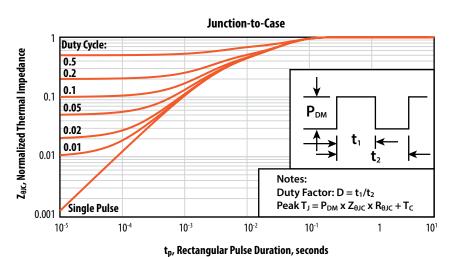


Figure 8: Normalized On-State Resistance vs. Temperature


Figure 9: Normalized Threshold Voltage vs. Temperature



All measurements were done with substrate shortened to source.

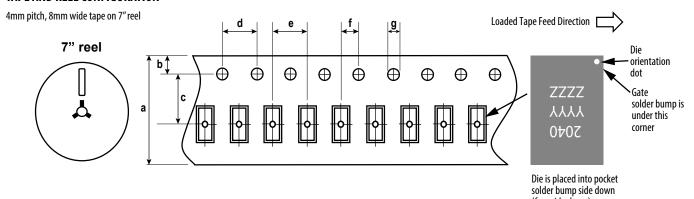
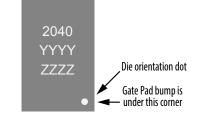


Figure 11: Transient Thermal Response Curves

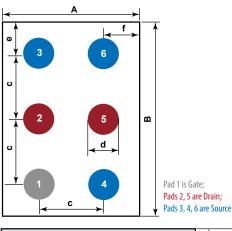
TAPE AND REEL CONFIGURATION


	EPC2040 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

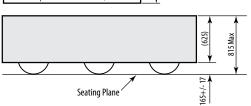
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

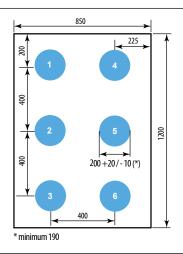
DIE MARKINGS


Part	Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking line 3	
EPC2040	2040	YYYY	ZZZZ	

(face side down)


DIE OUTLINE

Solder Bump View


	Micrometers			
DIM	MIN	Nominal	MAX	
Α	820	850	880	
В	1170	1200	1230	
C		400		
d	187	208	229	
e	185	200	215	
f	210	225	240	

Side View

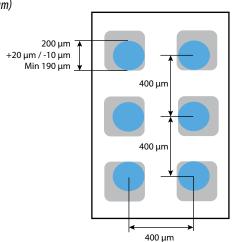
RECOMMENDED **LAND PATTERN**

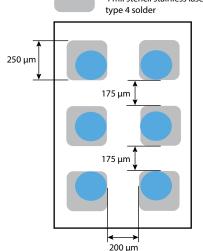
(measurements in μ m)

Solder mask opening

200 μm

The land pattern is solder mask defined Solder mask is 10 µm smaller per side than bump


Pad 1 is Gate;


Pads 2, 5 are Drain;

Pads 3, 4, 6 are Source

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Stencil opening

250 μm rounded square (60 deg) 4 mil stencil stainless laser cut

> Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.

Revised June, 2018