# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

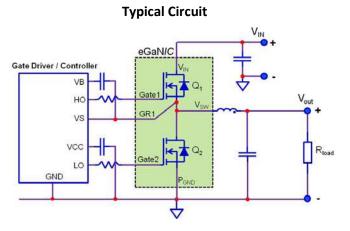


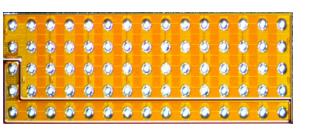
## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





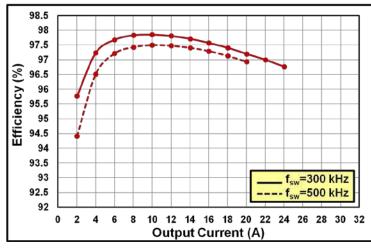

#### **Status: Engineering**


Features:

- 97% System Efficiency at 22 A
  - $\circ$  48  $V_{\text{IN}}$  to 12  $V_{\text{OUT}}$  , 300 kHz
  - o Includes output filter
- High Frequency Operation (Beyond 10 MHz)
- High Density Footprint
- Low Inductance Package
- Pb-Free (RoHS Compliant), Halogen Free

#### **Applications:**

• High Frequency DC-DC Conversion






EPC2105 devices are supplied only in passivated die form with solder bumps

Die Size: 6.05 mm x 2.3 mm

#### **Typical System Efficiency**



#### VIN=48 V VOUT=12 V

Additional application details in <u>AN018: GaN Integration for Higher</u>

| AXIMUM RATINGS DC-DC Efficiency and Powe                                                                   |                   | nsity                            |
|------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| Parameter                                                                                                  |                   | Value                            |
| Maximum Drain – Source Voltage (V <sub>SW</sub> to P <sub>GND</sub> , V <sub>IN</sub> to V <sub>SW</sub> ) |                   | 80 V                             |
| Maximum Gate – Source Voltage Range (Gate 1 to V <sub>SW</sub> , Gate 2 to P <sub>GND</sub> )              |                   | -4 V < V <sub>GS</sub> < 6 V     |
| Continuous Drain Current, 25 °C, $\theta_{JA}$ = 50 (Q1), 13 (Q2)                                          | 13 Q1 Control FET | 9.5 A                            |
|                                                                                                            | Q2 Sync FET       | 38 A                             |
|                                                                                                            | Q1 Control FET    | 75 A                             |
| Maximum Pulsed Drain Current, 25 °C, $T_{pulse}$ = 3                                                       | Q2 Sync FET       | 320 A                            |
| Optimum Temperature Range                                                                                  |                   | -40 °C < T <sub>J</sub> < 150 °C |



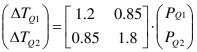
## STATIC CHARACTERISTICS

| Parameter                                           | Conditions                                    | Q1 Control FET                      | Q2 Sync<br>FET |  |
|-----------------------------------------------------|-----------------------------------------------|-------------------------------------|----------------|--|
| Maximum Drain – Source Voltage (BV <sub>DSS</sub> ) | Q1: $V_{GS}$ = 0 V, $I_D$ = 200 $\mu$ A       | 80 V                                | ,              |  |
|                                                     | Q2: $V_{GS}$ = 0 V, $I_{D}$ = 700 $\mu$ A     | 00 1                                |                |  |
| Maximum Drain – Source Leakage                      | $V_{DS}$ = 48 V, $V_{GS}$ = 0 V               | 150 μA                              | 550 μΑ         |  |
| Maximum R <sub>DS(on)</sub>                         | $V_{GS}$ = 5 V, $I_{D}$ = 20 A                | 14.5 mΩ                             | 3.4 mΩ         |  |
| Typical R <sub>DS(on)</sub>                         | $V_{GS}$ = 5 V, $I_{D}$ = 20 A                | 10 mΩ                               | 2.3 mΩ         |  |
| Gate – Source Threshold Voltage                     | Q1: $I_D$ = 2.5 mA, $V_{DS}$ = $V_{GS}$       |                                     |                |  |
| Gate – Source Threshold Voltage                     | Q2: $I_D = 10 \text{ mA}$ , $V_{DS} = V_{GS}$ | 0.8 V < V <sub>GS(TH)</sub> < 2.5 V |                |  |
| Gate – Source Maximum Positive Leakage              | $V_{GS} = 5 V$                                | 2.5 mA                              | 9 mA           |  |
| Gate – Source Maximum Negative                      | V <sub>GS</sub> = -4 V                        | -150 μA                             | -550 μA        |  |
| Leakage                                             |                                               |                                     |                |  |

 $T_J = 25$  °C unless otherwise stated

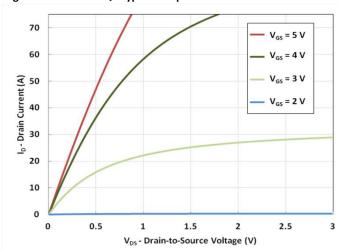
#### **DYNAMIC CHARACTERISTICS**

| Devementer                                      | Conditions                                      | Typical Value  |             |      |
|-------------------------------------------------|-------------------------------------------------|----------------|-------------|------|
| Parameter                                       | Conditions                                      | Q1 Control FET | Q2 Sync FET | Unit |
| C <sub>ISS</sub> (Input Capacitance)            |                                                 | 0.3            | 1.1         |      |
| C <sub>OSS</sub> (Output Capacitance)           | $V_{DS}$ = 40 V, $V_{GS}$ = 0 V                 | 0.2            | 0.8         | nF   |
| C <sub>RSS</sub> (Reverse Transfer Capacitance) |                                                 | 0.003          | 0.012       |      |
| Q <sub>G</sub> (Total Gate Charge)              | $V_{DS}$ = 40 V, $I_{D}$ = 20 A, $V_{GS}$ = 5 V | 2.5            | 10          |      |
| Q <sub>GS</sub> (Gate to Source Charge)         |                                                 | 1              | 3.2         |      |
| Q <sub>GD</sub> (Gate to Drain Charge)          | V <sub>DS</sub> = 40 V, I <sub>D</sub> = 20 A   | 0.5            | 2           | nC   |
| $Q_{G(TH)}$ (Gate Charge at Threshold)          |                                                 | 0.6            | 2.4         |      |
| Q <sub>oss</sub> (Output Charge)                | $V_{DS} = 40 V, V_{GS} = 0 V$                   | 11             | 55          |      |
| Q <sub>RR</sub> (Source-Drain Recovery Charge)  |                                                 | 0              | 0           |      |


 $T_J$  = 25 °C unless otherwise stated



#### THERMAL CHARACTERISTICS


|                  |                                                  | ТҮР            |             |      |
|------------------|--------------------------------------------------|----------------|-------------|------|
|                  |                                                  | Q1 Control FET | Q2 Sync FET |      |
| R <sub>θJC</sub> | Thermal Resistance, Junction to Case             | 0.4            |             | °C/W |
| R <sub>θJB</sub> | Thermal Resistance, Junction to Board (Note 2)   | 1.8            | 1.2         | °C/W |
| R <sub>012</sub> | Thermal Resistance, Cross-Coupling               | 0.85           |             | °C/W |
| R <sub>0JA</sub> | Thermal Resistance, Junction to Ambient (Note 1) | 42             |             | °C/W |

Note 1:  $R_{0JA}$  is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. Note 2:  $\Delta T$  is determined by the following matrix equation:



This matrix equation lets you calculate the temperature rise of each FET, given the power dissipated in each FET. Thermal models for EPC devices available at <a href="http://epc-co.com/epc/DesignSupport/DeviceModels.aspx">http://epc-co.com/epc/DesignSupport/DeviceModels.aspx</a>





#### Figure 1a: EPC2105-Q1 Typical Output Characteristics at 25°C

#### Figure 2a: EPC2105-Q1 Transfer Characteristics

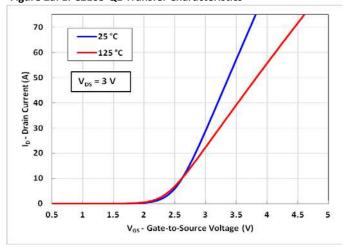
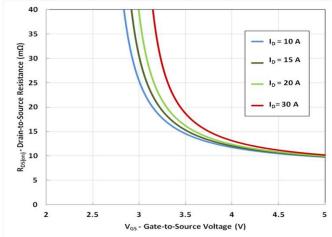
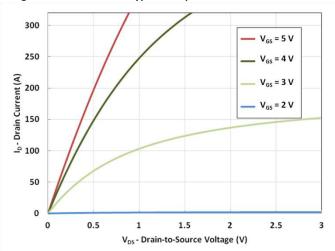





Figure 3a: EPC2105-Q1: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Drain Currents



Subject to Change without Notice

www.epc-co.com



#### Figure 1b: EPC2105-Q2 Typical Output Characteristics at 25°C

Figure 2b: EPC2105-Q2 Transfer Characteristics

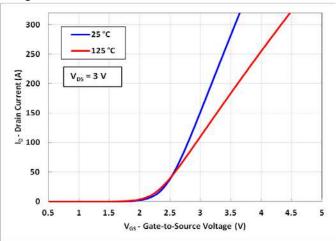
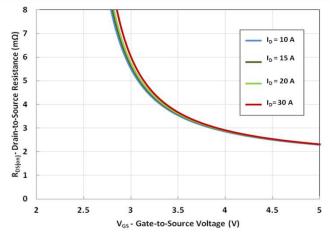
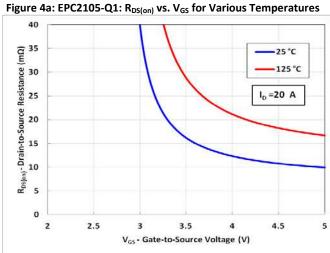
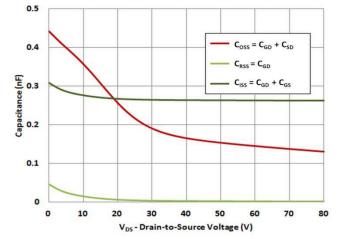





Figure 3b: EPC2105-Q2: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Drain Currents



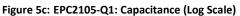


**COPYRIGHT 2017** 














Figure 4b: EPC2105-Q2: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Temperatures

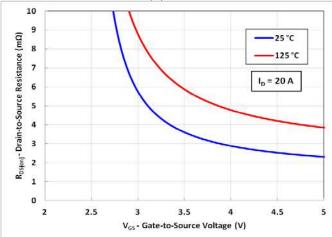
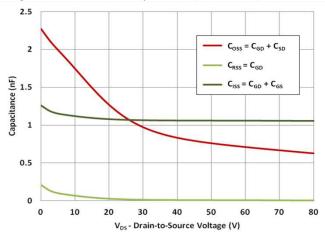
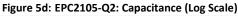
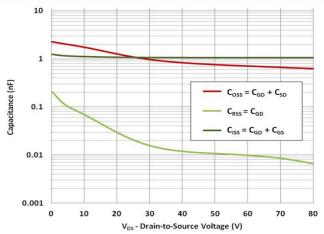






Figure 5b: EPC2105-Q2: Capacitance (Linear Scale)







Subject to Change without Notice



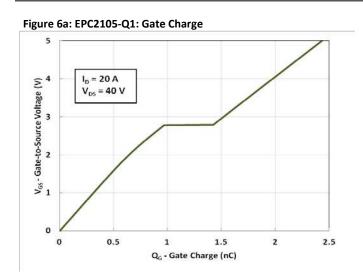



Figure 7a: EPC2105-Q1: Reverse Drain-Source Characteristics

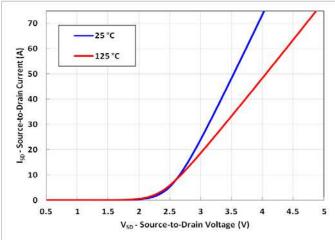
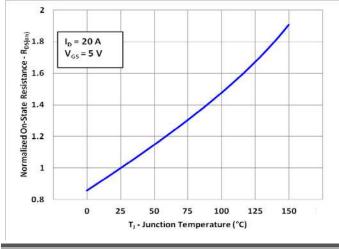




Figure 8a: EPC2105-Q1: Normalized On Resistance vs. Temperature



Subject to Change without Notice

0 0 2

Gate-to-Source Voltage (V)

'. > 1



4

8

10

Figure 7b: EPC2105-Q2: Reverse Drain-Source Characteristics

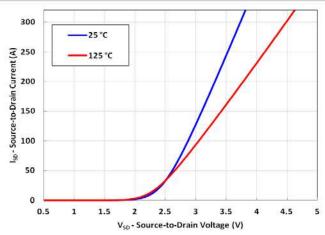
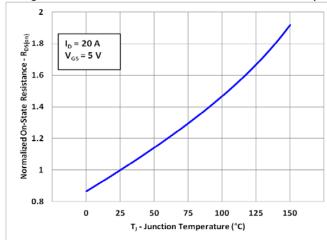
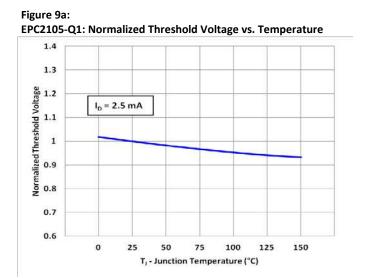
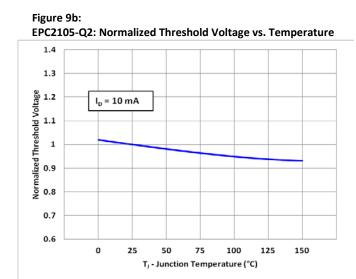




Figure 8b: EPC2105-Q2: Normalized On Resistance vs. Temperature



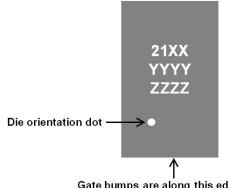
COPYRIGHT 2017


## Figure 6b: EPC2105-Q2: Gate Charge


I<sub>D</sub> = 20 A

V<sub>DS</sub> = 40 V

Page 6

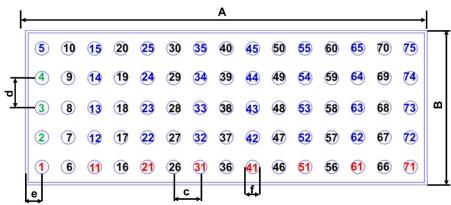









#### **DIE MARKINGS**

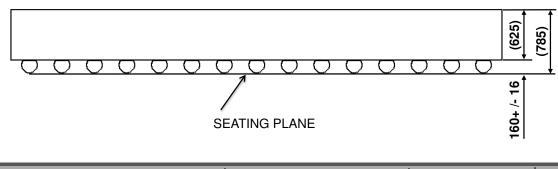



|             |                | Laser Marking  |                |
|-------------|----------------|----------------|----------------|
| Part Number | Part # Marking | Lot_Date Code  | Lot_Date Code  |
|             | Line 1         | Marking Line 2 | Marking Line 3 |
| EPC2105ENGR | 21XX           | YYYY           | ZZZZ           |

Gate bumps are along this edge of die

#### **DIE OUTLINE**

#### **Solder Bar View**

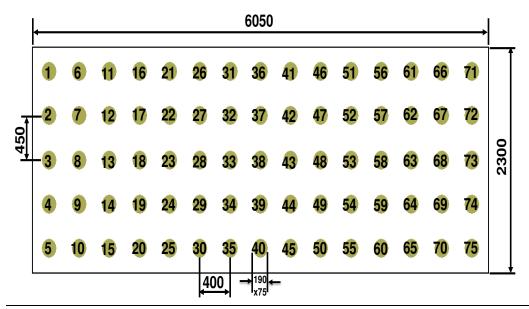



| ЫМ | Micrometers |         |      |  |
|----|-------------|---------|------|--|
|    | MIN         | Nominal | MAX  |  |
| A  | 6020        | 6050    | 6080 |  |
| В  | 2270        | 2300    | 2330 |  |
| с  | 400         | 400     | 400  |  |
| d  | 450         | 450     | 450  |  |
| е  | 210         | 225     | 240  |  |
| f  | 187         | 208     | 229  |  |

Pad 2 is Gate 1 (high side); Pad 4 is Gate 2 (low side); Pad 3 is HS Gate Return; Pads 5, 12, 13, 14, 15, 22, 23, 24, 25, 32, 33, 34, 35, 42, 43, 44, 45, 52, 53, 54, 55, 62, 63, 64, 65, 72, 73, 74, 75 Ground; Pads 1, 11, 21, 31, 41, 51, 61, and 71 are V<sub>IN</sub>;

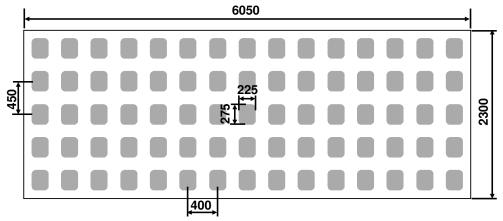
Pads 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 56, 57, 58, 59, 60, 66, 67, 68, 69, 70 are switch node.








#### **RECOMMENDED LAND PATTERN**


(Units in  $\mu m$ )

Land pattern is solder mask defined.



#### **RECOMMENDED STENCIL DESIGN**

(Units in  $\mu m$ )



Recommended stencil should be 4mil (100µm) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 3 solder, reference 88.5% metals content Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein. Engineering devices, designated with an ENG\* suffix at point of purchase, are first article products that EPC is preparing for production release. Specifications may change on final production release of the device. If you have questions please <u>contact us</u>. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of other.

eGaN<sup>\*</sup> is a registered trademark of Efficient Power Conversion Corporation. U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Revised January, 2017